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Abstract
PDDL+ is an expressive planning formalism that enables
modelling of hybrid domains having both discrete and con-
tinuous dynamics, in which the agent and the environment
description are sharply separated. Recently two mappings for
translating a PDDL+ problem under discrete interpretation
into a numeric task have been proposed. Such translations
produce a task of exponential or polynomial size, with respect
to the size of the native task.
In this work, starting from the above-mentioned polynomial
translation, we introduce a sound but not generally complete
variant that has the potential to improve the performance of
numeric planning engines. However, it is guaranteed to be
complete only in a subclass of PDDL+ problems. We define
the subclass of problems where the variant is safely applica-
ble, and we empirically assess the advantages of such trans-
lation. Further, we show that even in cases when the variant
does not guarantee the completeness, it can speed up the plan-
ning process, at the cost of losing part of the solutions space.

Introduction
Automated planning is a solid branch of artificial intelli-
gence that aims to design methodologies for synthesising, on
the basis of a known model of the world, a sequence of ac-
tions capable to transform a given state, i.e., the initial state,
into the desired state, i.e., the goal state. The planning com-
munity has developed several planning formalisms with the
aim of progressively increasing their expressive power, to
allow to accurately model complex application domains. An
important step in this direction was made by PDDL2.1 (Fox
and Long 2003), which enabled the possibility of giving to
the planning domains temporal and numerical behaviour.

Many real-world systems are characterised by the coexis-
tence of a discrete and continuous dynamic. Such physical
systems can be modeled with a particular class of dynamic
systems called hybrid systems. A well-established formal
theory to describe this class of systems has been provided
by Hybrid Automata (HA) (Henzinger 1996), which have
found wide use within the model-checking research commu-
nity with the purpose of developing robust methodologies to
test the reachability of hazardous states.

PDDL+ (Fox and Long 2006) is a planning formalism that
brings the planning capacity within the aforementioned class
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of hybrid systems. It can be argued that one of the major con-
tributions introduced by PDDL+ lies also in the clear separa-
tion that subsists between the changes in the world descrip-
tion due to the actions performed by the agent and those as-
cribable to an exogenous reaction of the environment, thus
outside the agent’s control. However, PDDL+ planning prob-
lems are notoriously difficult to be solved, and there is a
restricted set of planning engines that can support PDDL+
natively.

Recently, to increase the pool of planning engines that can
tackle hybrid planning problems, an exponential and poly-
nomial translation schemes have been proposed to translate
a PDDL+ problem into a discrete numeric problem (Percassi,
Scala, and Vallati 2021). This approach is part of a broader
family of reformulation approaches that directly extend the
set of methodologies that can be exploited to solved plan-
ning problems expressed in a given formalism (see for exam-
ple (Keyder and Geffner 2009; Palacios and Geffner 2009;
Cooper, Maris, and Régnier 2010; Taig and Brafman 2013;
Percassi and Gerevini 2019)).

In the present work, we aim to deepen the understanding
of the polynomial scheme proposed by Percassi, Scala, and
Vallati (2021), hereinafter denoted with POLY, with the aim
of understanding under what conditions it is possible to ob-
tain encoding capable of making the search less expensive
and therefore more efficient.

In particular, we propose a compact variant of this
schema, namely POLY−, which has the property of being
sound but incomplete for a general discretised PDDL+ plan-
ning problem. After having formally presented the POLY−

translation, we first identify which kind of solutions are ex-
cluded from the search space induced by the novel transfor-
mation, and second, we outline in which class of planning
problems POLY− is both sound and complete. Our experi-
mental analysis shows the performance gain that can be ob-
tained by using the proposed POLY− translation.

Background
Problem Formalisation
In this section we formalise the problem of PDDL+ (Fox
and Long 2006), and the problem of numeric planning as
the one that can be specified in PDDL2.1 (level 2) (Fox and
Long 2003), hereinafter simply referred to as PDDL2.1. We
first describe the syntax of our problems, then detail the se-



mantics of PDDL+ under discrete time. Our discussion fol-
lows Shin and Davis (2005)’s formalisation and terminol-
ogy1 in a way that is instrumental for our work. We de-
tail our problems using propositional formulas over compar-
isons and Boolean variables2. A comparison is ξ ./ 0 where
ξ is a mathematical expression, and ./∈ {≤, <,=, >,≥}.
Definition 1 (PDDL+ problem). A PDDL+ problem Π is the
tuple 〈F,X, I,G,A,E, P 〉 where:

• F and X are the sets of Boolean and numeric variables,
respectively.

• I and G are the description of the initial state, expressed
as a full assignment to all variables in X and F , and the
description of the goal, expressed as a formula, respec-
tively.

• A and E are the sets of actions and events, respec-
tively. Actions and events are pairs 〈p, e〉 where p is a
propositional formula and e is a set of conditional ef-
fects of the form c . e where (i) c is a formula and
(ii) e is a set of Boolean (f = {⊥,>}) or numeric
(〈{asgn, inc, dec}, x, ξ〉 where ξ is an expression over
X) assignments.

• P is a set of processes. A process is a pair 〈p, e′〉 where p
is a formula and e′ is a set of numeric continuous effects
expressed as pairs 〈x, ξ〉 with the meaning that ξ repre-
sents the time-derivative of x, with x ∈ X .

Let a = 〈p, e〉 be an action or an event or a process, we
use pre(a) to denote the precondition p of a, and eff(a) the
effect e of a. In the following we will use a, ρ and ε for
denoting an action, process and event, respectively. In order
to lighten the notation, all conditional effects in the form
> . e are written as e, by omitting the antecedent >.

A plan for a PDDL+ is an ordered set of timed actions plus
a time envelope, organised formally as following.
Definition 2 (PDDL+ plan). A PDDL+ plan πt is a pair
〈π, 〈ts, te〉〉 where π = 〈〈a0, t0〉, 〈a1, t1〉, ..., 〈an−1, tn−1〉〉,
with ti ∈ R, is a sequence of time-stamped actions and
〈ts, te〉, with ts, te ∈ R, is a real interval, called envelope,
within which π is performed.

Definition 3 (PDDL2.1 problem). A PDDL2.1 problem Π
is the tuple 〈F,X, I,G,A, c〉 where all elements are as for
PDDL+, yet there are neither processes nor events and c as-
sociates to each action a rational cost.

Definition 4 (PDDL2.1 plan). A PDDL2.1 plan is a sequence
of actions 〈a0, ..., an−1〉. The cost of the plan π is the sum
of all action costs in π, cost(π) =

∑
a∈π c(a).

In the rest of the section we focus on the discrete seman-
tic of PDDL+, mainly based on Percassi, Scala, and Val-
lati (2021), and in particular on its temporal dimension. We
assume the reader is familiar with notions of action/event
applicability, and simply use γ(s, ·) for the state resulting
by applying either an action/event (γ(s, a)) or a sequence

1As Shin and Davis (2005), we idealise the execution of actions
and events to be truly instantaneous transitions as long as an order
is imposed among transitions sharing the same time clock.

2With abuse of notations we also use positive and negative lit-
erals as shortcut for f = {>}.

of action/events (γ(s, 〈a0, . . . , an〉)) in state s. For details
on PDDL2.1, we refer the reader to Fox and Long (2003).
Note that assuming the semantics provided in (Fox and Long
2003), an action is valid, and then applicable, if no numeric
variables appears as an lvalue in more than one simple as-
signment effect, i.e., one using asgn. Since the numeric ef-
fect having the form 〈inc, x, ξ〉 (〈dec, x, ξ〉) are normalised
in 〈asgn, x, x+ξ〉 (〈asgn, x, x−ξ〉), then an action a having
at least two numeric assignment affecting the same variable
and using inc or dec is to be considered invalid. This espe-
cially holds if the two aforementioned conflicting effects are
subordinated to the triggering some conditional effects.

Moreover, we exploit the widely shared assumptions of
boundness adopted in PDDL+ problems (Fox and Long
2006). Importantly, we assume there always is a finite (pos-
sibly empty) and unique acyclic sequence of events that can
be triggered, and there is a bound on the number of sponta-
neous changes of processes over a closed interval. We start
off by recalling the notion of time points, intervals and his-
tories over intervals, which are used to define the validity of
PDDL+ plan interpreted on a discrete timeline.

A time point T is a pair 〈t, n〉 where t ∈ R and n ∈ N.
Time points over R× N are ordered lexicographically.

A history H over I = [Ts, Te] maps each time point
in I into a situation. A “situation at time T ” is the tuple
H(T ) = 〈HA(T ),Hs(T )〉, where HA(T ) is the set of ac-
tions executed at time T andHs(T ) is a state, i.e., an assign-
ment to all variables in X and F at time T . We denote by
Hs(T, v) andHs(T, ξ) the value assumed in the state at time
T by v ∈ F∪X and by a numeric expression ξ, respectively.
Etrigg(T ) indicates the set of active events in T .
T is a significant time point ofH over [Ts, Te] iff, in such

a time point, an action is applied, an event is triggered, a
process has started or stopped or there has been a discrete
change just before. A history H is monotonous over a real
interval It if there are no significant time points in It.
Definition 5 (Valid PDDL+ plan). πt is valid plan for Π
iff Hπs (Tm) |= G and, for each a ∈ HπA(T ) with T ∈ I,
Hπs (T ) |= pre(a).

Given a mathematical expression ξ denoting the time
derivative of a given variable x, and a rational value δ ∈ Q
we denote with ∆(ξ, δ) the discretised update for x.

Definition 6 (PDDL+ plan discrete projection). Let δ ∈ Q,
let Hπ be a history, let I be an initial state and let πt be a
PDDL+ plan. We say that Hπ is a discrete projection of πt
which starts in I iff Hπ induces the significant time points
TH = 〈T0 = 〈t0, n0〉, · · · , Tm = 〈tm, nm〉〉 where either
ti+1 = ti + δ or ti+1 = ti

R1 Etrigg(Ti) 6= ∅ iff Hπs (Ti+1) = γ(Hπs (Ti), Etrigg(Ti)),
HπA(Ti) = ∅, ti+1 = ti and ni+1 = ni + 1;

R2 HπA(Ti) 6= ∅ iff Hπs (Ti+1) = γ(Hπs (Ti),HπA(Ti)),
Etrigg(Ti) = ∅, ti+1 = ti and ni+1 = ni + 1;

R3 for each 〈ai, ti〉, 〈aj , tj〉 ∈ π, with i < j and ti = tj
there exists Tk, Tz ∈ TH such that ai ∈ HπA(Tk) and
aj ∈ HπA(Tz) where tk = tz = ti and nk < nz;

R4 for each pair of contiguous significant time points Ti =
〈ti, ni〉, Ti+1 = 〈ti+1, 0〉 such that ti+1 = ti+δ, the value



of each numeric variable x ∈ X is updated as:

Hπs (Ti+1, x) = Hπs (Ti, x) +
∑

〈x′,ξ〉∈eff(ρ), x′=x
ρ∈{ρ∈P, Hπs (Ti)|=pre(ρ)}

Hπs (Ti,∆(ξ, δ))

and values of unaffected variables remain unchanged
(frame-axiom).

In the following we provide a more intuitive descrip-
tion of R1–R4 of Def. 6. R1 (R2) states that if an action
(event) is executed (triggered) in a significant time point
T1 = 〈t, n〉, then there necessary exists a successor of T1,
i.e., T2 = 〈t, n+ 1〉 having the same clock t and the step in-
creased by one unit, i.e., n+1; the successor state associated
to T2 is calculated by simply applying the discrete effects
of the action (event). R3 is used to enforce how actions of a
PDDL+ plan π are projected over an history, preserving their
original ordering in case they share the same time-stamp in
π. R4 is used to enforce how a numeric variable changes
continuously over time according to the active processes in
those “monotonous” temporal intervals in which “nothing
happens” (there is no action/event executed/triggered and
there is no process which starts/ends).

Definition 7 (δ Discrete valid PDDL+ plan). πt is a valid
plan for Π under δ discretisation iff Hπs (Tm) |= G and, for
each T ∈ I such thatHπA(T ) 6= ∅, thenHπs (T ) |= pre(a).

Polynomial Translation
As observed by Percassi, Scala, and Vallati (2021), it is pos-
sible to translate a discretised PDDL+ into a PDDL2.1 prob-
lem with a polynomial translation, namely POLY. The key
idea in POLY consists in simulating, through the execution
of a sequence of actions, the progress of a discrete amount
of time δ ∈ Q.

Let Π = 〈F,X, I,G,A, ∅, P 〉 be an event-free PDDL+
problem, and a discretisation parameter t = δ, POLY
generates a new PDDL2.1 problem ΠPOLY = 〈F ∪ D ∪
{pause}, X∪Xcp, I, G∧¬pause, Ac∪AP ∪{start, end}, c〉
such that:

Xcp = {xcopy | x ∈ X}

D =
⋃

ne∈eff(ρ)
ρ∈P

{donene}

Ac = {〈pre(a) ∧ ¬pause, eff(a)〉 | a ∈ A}

start = 〈¬pause, {pause} ∪
⋃
x∈X

{〈asgn, xcopy, x〉}〉

end = 〈
∧

done∈D

done ∧ pause, {¬pause} ∪
⋃

done∈D

{¬done}〉

AP =
⋃

ne:〈x, ξ〉∈eff(ρ)
ρ∈P

{〈pause ∧ ¬donene, {σ(pre(ρ), Xcp).

{〈inc, x,∆(δ, σ(ξ,Xcp)〉}} ∪ {donene}〉}

Whenever the passage of a discrete amount of time δ
has to be simulated within ΠPOLY, the sequence of actions

wait = 〈start, seq(AP ), end〉, where seq(AP ) is any per-
mutation of all AP actions, has to be performed. Such sim-
ulation consists of the following steps:
• start, this action enables the execution of all AP actions

and, at the same time, disables all those that do not belong
to AP through the use of the pause predicate;

• seq(AP ), this sequence modifies the state of the world
according to the dynamics of the active processes; to pre-
vent the AP actions from interfering with each other,
the start action performs a copy of all the numeric vari-
ables X , assigning the current value to the corresponding
Xcp variables; this allows to correctly modify the state
of the world, regardless of the specific sorting chosen for
seq(AP );

• end, this actions closes the simulation and can be exe-
cuted, by using the done predicates, if all the AP actions
have been executed.

Sound (but Incomplete) Translation
For an event-free PDDL+ problem Π, the POLY− re-
formulation generates a PDDL2.1 problem ΠPOLY− =
〈F,X, I,G,A ∪ {SIM}, c〉, discretised in t = δ. ΠPOLY− is
almost identical to Π but for the absence of processes and
the presence of the special action SIM playing the role of
the simulator, i.e., what changes when time goes forward
(similarly to the wait sequence for POLY translation). SIM is
defined as follows:

pre(SIM) = >

eff(SIM) =
⋃
ρ∈P

{pre(ρ) .
⋃

〈x,ξ〉∈eff(ρ)

{〈inc, x,∆(δ, ξ)〉}}

SIM action is always applicable and features a conditional
effect for each process ρ ∈ P . Such conditional effect is trig-
gered if the preconditions of ρ holds when SIM is applied,
modifying, for each 〈x, ξ〉 ∈ eff(ρ), the affected numeric
variable x according to the discretised effect expression, i.e
∆(δ, ξ).

Hereinafter when we say “Π admits a valid solution” we
imply “under discrete interpretation”.
Proposition 1 (Soundness of POLY−). Let Π be a PDDL+
problem, and let ΠPOLY− be the PDDL2.1 problem obtained
by using the POLY− translation discretised in t = δ. If
ΠPOLY− admits a solution then so does Π.
Proposition 2 (Incompleteness of POLY−). Let Π be a
PDDL+ problem, and let ΠPOLY− be the PDDL2.1 problem
obtained by using the POLY− translation discretised in t =
δ. If Π admits a solution then ΠPOLY− may not admit it.

Proof. To show the correctness of the proposition we build
the simplest case in which a solution πt for Π does not admit
a corresponding solution π′ for ΠPOLY− .

Let πt = 〈π, (0, te)〉 be a valid solution for Π (assume
w.l.o.g. ts = 0) under δ discretisation and assume that πt in-
duces, according to Def. 6, a discrete projectionHπ in which
the following conditions are satisfied

• in the first significant time point of Hπ , i.e., T0 = 〈0, 0〉,
two numeric continuous effect affecting the same variable



x ∈ X are active, i.e, Hπs (T0) |= pre(ρ) ∧ pre(ρ′) with
ρ, ρ′ ∈ P, 〈x, ξ〉 ∈ eff(ρ) and 〈x, ξ′〉 ∈ eff(ρ′);

• Hπ is monotonous over (0, δ).

Using the translation POLY− we generate a PDDL2.1
planning problem ΠPOLY− where the action SIM has, in ref-
erence to ρ and ρ′, the following conditional effects:

eff(SIM) = {pre(ρ) . {〈op, x,∆(δ, ξ)〉}
pre(ρ′) . {〈op′, x,∆(δ, ξ′)〉}, ...}

Let π′ be a PDDL2.1 plan constructed in such a way that:
i) for each 〈a, t〉 ∈ π then a′ ∈ π′ (where a′ is the compiled
version of a); ii) for each 〈ai, ti〉, 〈aj , tj〉 with ai ≺ aj in π
then a′i ≺ a′j in π′ iii) a sequence, possibly empty, of SIM
actions has to be placed before each action a′i ∈ π′ and at
the end of π′ according to the following structure:

π
′
= 〈〈SIM〉 ×

t0

δ
, a
′
0, 〈SIM〉 ×

t1 − t0
δ

, ..., a
′
n−1, 〈SIM〉 ×

te − tn−1

δ
〉

where 〈SIM〉 × k indicates k repetitions of SIM.
By using this mapping from πt to π′, we get that the first

action of π′ is SIM, which is used to simulate the passage of
time from 0 to δ. Π and ΠPOLY− have the same initial state
and then SIM is applied in a state I |= pre(ρ)∧ pre(ρ′), thus
activating the aforementioned conditional effects which both
affect x. The state thus generated has to be considered, ac-
cording to the PDDL2.1 semantic, inconsistent and it has to
be pruned from the search space induced by ΠPOLY− . It fol-
lows that the action SIM is not applicable in I within ΠPOLY− ,
and then π′ is not a valid solution for ΠPOLY− .

Through this discussion, we have shown a minimal case
in which the translation scheme POLY− generates a numeric
problem whose induced search space does not contain some
of the states present in the original problem.
Definition 8 (Forbidden states). Let Π be a PDDL+ problem,
and let ΠPOLY− be the PDDL2.1 problem obtained by using
the POLY− translation discretised in t = δ. We define the set
of forbidden states for ΠPOLY− as follows:

FS(ΠPOLY−) = {s | s ∈ states(Π), s |=
∨

〈ρ,ρ′〉∈FP(Π)

pre(ρ) ∧ pre(ρ′)}

where

FP(Π) = {〈ρ, ρ′〉 | 〈x, ξ〉 ∈ eff(ρ), 〈x′, ξ′〉 ∈ eff(ρ′),

x = x′, ρ 6= ρ′}
states(Π) = {⊥,>}|F | × (R ∪ {⊥})|X|

The set of forbidden states for ΠPOLY− is defined as the set
of states belonging to all possible tuples definable on X ∪V
such that at least one pair of forbidden processes is active. A
pair of processes 〈ρ, ρ′〉 is said to be forbidden, i.e., 〈ρ, ρ′〉 ∈
FP(Π), iff ρ and ρ′ have continuous numeric effects having
the same variable as right-hand side value.

Note that these states are labelled as forbidden in the sense
that, once reached, it is not possible to apply the SIM action
as its execution would cause the generation of an undefined

state. This means that a π′ plan for ΠPOLY− can generate a
forbidden state as long as no SIM action is applied to it.

Also note that Def. 8 is syntactic definition and it indepen-
dent from I , G or from the reachability of such states, there-
fore we could have a Π problem such that FS(ΠPOLY−) 6= ∅
but in which such states are unreachable.

In the following we outline a syntactic property that a do-
main has to satisfy in order to ensure that POLY− is complete
other than sound.
Definition 9 (Mono left-hand side Π). Let Π be a PDDL+
problem. We say that Π is a mono left-hand side PDDL+
problem (shortened in 1-lhs) if it does not have two pro-
cesses having numeric continuous effects having as left-
hand side value the same numeric variable.
Proposition 3 (Soundness and completeness of POLY− un-
der 1-lhs condition). Let Π be a 1-lhs PDDL+ problem, and
let ΠPOLY− be the PDDL2.1 problem obtained by using the
POLY− translation discretised in t = δ. ΠPOLY− admits a
solution under δ discretisation iff so does Π.

The property of completeness stated in Proposition 3 de-
rives from the definition of 1-lhs domain which implies that
the set of forbidden states is necessarily empty as forbidden
pair processes can not exist. The semantic property of being
1-lhs is sufficient but not necessary (in the sense that there
may be problems that are not 1-lhs where POLY− is sound
and complete).

In the following, we study in what relationship the solu-
tions space of Π and ΠPOLY− are in order to actually under-
stand what we can expect if we use POLY−.
Definition 10 (Solutions space). Let Π be a 1-lhs PDDL+
problem, and let ΠPOLY− be the PDDL2.1 problem obtained
by using the POLY− translation discretised in t = δ. We
define the the solutions space of Π and ΠPOLY− as follows:

SS(Π) = {πt | πt is a valid solution for Π},
SS(ΠPOLY−) = {map−1(π′) | π′ is a valid solution for ΠPOLY−}

where map−1(π) is a procedure that, given a PDDL2.1
plan, it builds the corresponding PDDL+ plan.

Note that the inverse mapping, realised through the func-
tion map−1(·), is necessary in order to make the solu-
tions spaces sets described in different formalism compa-
rable. Starting from π′ we can build πt = map−1(π′) =
〈π, 〈0, te〉〉 as follows: i) for each action a′i ∈ π′ such that
a′i 6= SIM then 〈ai, ti〉 ∈ π, where ti is equal to δ multiplied
for the occurrences of SIM in π′ before a′i; ii) for each a′i, a

′
j

such that a′i ≺ a′j in π′ then 〈ai, ti〉≺ 〈aj , tj〉 in π and iii)
te is equal to δ multiplied by the number of SIM in π′.
Proposition 4. Let Π be a PDDL+ problem, and let ΠPOLY−

be the PDDL2.1 problem obtained by using the POLY− trans-
lation discretised in t = δ, then the following relationship
hold:

1. in the general case it holds that SS(ΠPOLY−) ⊆ SS(Π);
2. if Π is 1-lhs, then SS(ΠPOLY−) = SS(Π);
3. if Π is not 1-lhs and then there exists a plan π for Π

whose execution generates a s ∈ FS(Π), in which time



has to pass, then π 6∈ SS(ΠPOLY−) and thus SS(ΠPOLY−) ⊂
SS(Π);

4. if Π is not 1-lhs and each π ∈ SS(Π) generates a state
s ∈ FS(Π), in which time has to pass, SS(ΠPOLY−) = ∅.

Example 1 (POLY vs POLY− translation). Let Π =
〈F,X, I,G,A, ∅, P 〉 be a PDDL+ problem without events
encompassing one Boolean variable, i.e., F = {f1}, four
numeric variables, i.e., X = {x1, x2, x3, x4} and two pro-
cesses P = {ρ1, ρ2} such that:

ρ1 = 〈x1 > 0, {〈x2, x3〉}〉, ρ2 = 〈f1, {〈x2, x4〉}〉

According to R4 of Def. 6, ρ1 affects x2 according to dx2

dt =
x3 when x1 > 0 holds and, similarly, ρ1 affects x2 accord-
ing to dx2

dt = x4 when f1 holds. Finally, if x1 > 0∧ f1, then
dx2

dt = x3 + x4.

POLY Let ne1 = 〈x2, x3〉 and ne2 = 〈x2, x4〉 be
the numeric continuous effects of ρ1 and ρ2, respec-
tively. The PDDL2.1 problem obtained using POLY discre-
tised in t = δ is ΠPOLY = 〈F ∪ {donene1 , donene2} ∪
{pause}, X∪{xcopy

1 , xcopy
2 , xcopy

3 , xcopy
4 }, I, G∧¬pause, Ac∪

{SIM-ne1, SIM-ne2} ∪ {start, end}, c〉 such that:

start =〈¬pause, {〈asgn, xcopy
1 , x1〉, 〈asgn, xcopy

2 , x2〉,
〈asgn, xcopy

3 , x3〉, 〈asgn, xcopy
4 , x4〉, pause}〉

SIM-ne1 =〈pause ∧ ¬donene1 , {(x
copy
1 > 0) . {〈inc, x2, x

copy
3 · δ〉},

donene1}〉
SIM-ne2 =〈pause ∧ ¬donene2 , {f1 . {〈inc, x2, x

copy
4 · δ〉},

donene2}〉
end =〈pause ∧ donene1 ∧ donene2 , {¬pause,¬donene1 ,

¬donene2}〉

POLY− The PDDL2.1 problem obtained using POLY
discretised in t = δ is ΠPOLY− = 〈F,X, I,G,A ∪ {SIM}, c〉
such that:

SIM =〈>, {x1 > 0 . {〈inc, x2, x3 · δ〉},
f1 . {〈inc, x2, x4 · δ〉}}〉

Note that Π is not a 1-lhs because ne1 and ne2 affect the
same variable, i.e., x2, and so the transformation POLY−

could not preserve the solutions space of Π. We can define
the set of forbidden state for ΠPOLY− as follows:

FS(ΠPOLY−) = {s ∈ states(Π), s |= f1 ∧ x1 > 0}

Experimental Analysis
Our experimental analysis aims to evaluate the benefit that
the proposed POLY− translation can provide to planning en-
gines, also in comparison to the polynomial translation pro-
posed in (Percassi, Scala, and Vallati 2021).

In this experimental evaluation, we consider the well-
known numeric planning system METRIC-FF (Hoffmann
2003). Our experiments were run on an Intel Xeon Gold
6140M CPUs with 2.30 GHz. For each instance, we set

a cutoff time of 900 seconds, and RAM was limited to
8 GB. As a benchmark, we consider the same suite ex-
amined in (Percassi, Scala, and Vallati 2021) which in-
cludes the following domains: Solar-Rover (Rover), Linear-
Car (Lin-Car), Linear-Generator (Lin-Gen), Urban-Traffic-
Control (UTC) from (Vallati et al. 2016), Baxter from
(Bertolucci et al. 2019) and Overtaking-Car (OT-Car). With
reference to the benchmark, Table 1 reports which of these
domains satisfy the 1-lhs property.

Table 2 shows the number of evaluated nodes, and the run-
time needed by METRIC-FF to obtain a solution for prob-
lems translated through POLY and POLY−. We measured the
number of evaluated nodes and the search time on aver-
age by considering the instances solved by both approaches,
only. When a domain is 1-lhs, fewer and fewer nodes are
evaluated, while, if not, either a solution is not found due
to the incompleteness of POLY− (as in Lin-Gen and UTC)
or it is necessary to evaluate more nodes, e.g., Baxter. As
far as the search time is concerned, it emerges that, when-
ever METRIC-FF with POLY− finds a solution, it tends to
be faster than when using POLY. In Lin-Car, although fewer
nodes are evaluated using POLY−, the time is essentially
comparable. This may be due to the fact that the consid-
ered instances are too small to allow to notice significant
differences. In Baxter, although it is not a 1-lhs domain, so-
lutions are generated faster using POLY− even if more nodes
are evaluated; this is probably due to the more compact rep-
resentation that makes search computationally lighter even
if it prunes from the search space a large number of states,
forcing the planning engine to explore a larger chunk of the
search space to find a solution.

Figure 1 shows coverage over time for the considered
translations. In particular, we have reported the results ob-
tained for METRIC-FF using POLY and POLY− and a third
composite translation, denoted as POLY∗, which consists
in preceding the compiler with a selector that switches to
POLY− if the domain considered is 1-lhs and to POLY other-
wise. Notably, this easy selector can help in combining the
strengths of the two translation, without losing complete-
ness. For reference, Figure 1 also shows the coverage ob-
tained by the planning engine ENHSP (Scala et al. 2020)
when run on the original PDDL+ discretised models using
the same machine and the runtime cutoff of METRIC-FF.
Finally, ENHSP solves some problems within the time win-
dow of 1 second, while POLY, POLY− and POLY∗ do not
because of the overhead introduced by the translation.

Domain Rover Lin-Car Lin-Gen UTC Baxter OT-car
1-lhs 3 3 7 7 7 3

Table 1: Benchmark structure analysis.



Domain
METRIC-FF

Evaluated Nodes
(000’s)

Search Time
(seconds)

POLY POLY− POLY POLY−

Rover 14.73 4.22 7.72 2.67
Lin-Car 2.62 0.40 3.08 3.20
Lin-Gen — — — —

UTC — — — —
Baxter 27.08 68.25 27.19 7.14
OT-Car 106.28 15.35 8.36 3.45

Table 2: Average evaluated nodes and search time per do-
main achieved by METRIC-FF when run using models
translated by POLY and POLY−. “—” denotes that POLY−

did not allow to find any solution.

Figure 1: Total number of instances solved by each of the
considered planning approaches, over time.

Conclusion
In this work, we introduced a sound but incomplete trans-
lation from PDDL+ to numeric planning, with the aim of
better investigating how an existing polynomial translation
can be optimised (Percassi, Scala, and Vallati 2021). The in-
troduced POLY− can generate more compact encodings, but
its completeness is guaranteed only on a subclass of PDDL+
problems, that we defined as 1-lhs. Our experimental anal-
ysis, run on a variety of PDDL+ benchmarks, confirms the
benefits of using the proposed POLY− translation. Further,
it shows that POLY− can be beneficial also in some cases
where the the model is not 1-lhs, if the solutions space of
a problem admits solutions that do not require intermediate
states in which two continuous numerical effects that affect
the same variable are simultaneously active.

Future work will focus on optimising the considered poly-
nomial translations, and in investigating advanced ways for
selecting and combining different translations at runtime,
according to the characteristics of the PDDL+ problem to be
solved, and of the planning engine in use.
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