
Online Learning of Action Models for PDDL Planning

Leonardo Lamanna,1,2 Alessandro Saetti, 2 Luciano Serafini, 1

Alfonso E. Gerevini, 2 Paolo Traverso 1

1 Fondazione Bruno Kessler (FBK), Povo, Trento, Italy
2 Dipartimento di Ingegneria dell’Informazione

Università degli Studi di Brescia, Italy

Abstract

The automated learning of action models is widely recog-
nised as a key and compelling challenge to address the dif-
ficulties of the manual specification of planning domains.
Most state-of-the-art methods perform this learning offline
from an input set of plan traces generated by the execution
of (successful) plans. However, how to generate informative
plan traces for learning action models is still an open issue.
Moreover, plan traces might not be available for a new envi-
ronment. In this paper, we propose an algorithm for learning
action models online, incrementally during the execution of
plans. Such plans are generated to achieve goals that the al-
gorithm decides online in order to obtain informative plan
traces and reach states from which useful information can
be learned. We show some fundamental theoretical proper-
ties of the algorithm, and we experimentally evaluate the on-
line learning of the actions models over a large set of IPC
domains.

Introduction
Automated planning techniques require the specification of
planning domains through action models (a set of precon-
ditions and a set of effects for each domain action). How-
ever, the manual specification of the action models is often
an inaccurate, time consuming, and error-prone task. The
automated learning of action models is widely recognised
as a key and compelling challenge to overcome these dif-
ficulties. Several works have addressed the task of learning
action models, and have provided important results from dif-
ferent perspectives and according to different assumptions,
see, e.g., (Yang, Wu, and Jang 2007; Amir and Chang 2008;
Xu and Laird 2010; Rodrigues et al. 2011; Mourão et al.
2012; Zhuo and Kambhampati 2013; Cresswell, McCluskey,
and West 2013; Certicky 2014; Aineto, Jiménez, and Onain-
dia 2018; Aineto, Jiménez Celorrio, and Onaindia 2019).

However, most of the recent and state-of-the-art methods
perform learning offline, and require as input a set of plan
traces generated by previously executed actions. This has
two major drawbacks. First, often agents need to learn the
model of the domain online, because they need to explore
an unknown environment, acquire information, and learn a

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

model by experimenting the execution of their actions incre-
mentally, step by step. This is the case of many applications
in robotics, e.g., in SLAM (Stachniss, Leonard, and Thrun
2016), where the robot tries to build a map of the environ-
ment by exploration, or in the Robocup Rescue (Kitano and
Tadokoro 2001), where the robot needs to explore the en-
vironment to perform a rescue task. Second, previous work
on learning action models does not deal with the problem
of generating informative plan traces. As stated in the con-
clusions of (Aineto, Jiménez Celorrio, and Onaindia 2019),
generating informative plan traces for learning planning ac-
tion models is still an open issue. Indeed, if the available set
of plan traces does not contain informative examples, there
is little chance to learn all action preconditions, since some
preconditions can be only discovered by specific plans that
can unlikely be generated randomly (Fern, Yoon, and Givan
2004).

In this paper, we propose a new approach that does not
suffer these drawbacks, focusing on the case of learning
STRIPS action schema expressed in PDDL, and under the as-
sumption of full observability of the states reached by the
agent. We propose an algorithm, called OLAM algorithm
(Online Learning of Action Models), for learning action
models online, incrementally during the execution of plans.
A key aspect of OLAM is that it combines and interleaves the
activity of learning action preconditions and effects with an
exploration phase that selects which plan to execute. In this
way, OLAM generates plan traces to reach certain goal states,
decided online, which are useful for the learning task.

Beyond proving termination, we analyse our algorithm to
show some important theoretical properties that are defined
according to the state transitions of the models learned by
the algorithm. In particular we prove that OLAM is correct,
i.e., it learns action models which generate only the state
transitions generated by the planning domain modelling the
true environment where the agent acts. Moreover OLAM is
“integral”, i.e., it learns action models that generate all the
transitions of the true environment with respect to the states
that can be reached by the algorithm.

We also provide substantial empirical evidence of the
good learning performance of OLAM using a large set of
benchmarks from the International Planning Competitions
(IPCs). Finally we experimentally compare OLAM with a re-
cent and state-of-the-art method for learning action models

offline, showing that the online learning can be much more
effective.

Related work
Recent offline approaches address the problem of model
learning with different assumptions on the observability of
states and actions, see, e.g., (Amir and Chang 2008; Bonet
and Geffner 2020; Cresswell, McCluskey, and West 2013;
Mourão et al. 2012; Newton et al. 2007; Yang, Wu, and Jang
2007; Zhuo et al. 2010; Zhuo and Kambhampati 2013). A
prominent system among these is Fama (Aineto, Jiménez
Celorrio, and Onaindia 2019), which learns action models
offline from examples by transforming the learning task into
a classical planning task. It works with different kinds of
inputs, from a set of plans to just a pair of initial and final
states, without intermediate actions or states. Moreover, it
accepts in input partially specified action models.

On the one hand, the aforementioned approaches to of-
fline learning can deal with partial observability of states and
actions, and some of them even with noisy states and noisy
actions. OLAM requires instead full observability of states, it
does not deal with noisy sensors, and actions are decided by
OLAM itself. On the other hand, differently from OLAM, all
these approaches are offline, require in input plan traces that
in some cases might be not available, and hence do not deal
with the issue of selecting informative plan traces.

Since the seminal work on online learning of operators
(Gil 1994b,a; Wang 1996), and the first approaches to learn-
ing action models by integrating learning, planning, and ex-
ecution (Garcı́a-Martı́nez and Borrajo 2000), some recent
approaches have addressed the problem of online and in-
cremental learning of action models. Walsh and Littman
(2008) propose an approach to online learn action models
which can be used in web-service planning problems. Their
approach requires the use of an external “teacher” provid-
ing plan traces on demand. 3SG (Certicky 2014) is an on-
line algorithm that learns probabilistic action models with
conditional effects and deals with action failures, sensory
noise, and incomplete information. Xu and Laird (2010)
describes an instance-based online method for learning ac-
tion models in relational domains. The work is extended to
deal with both discrete and continuous action models (Xu
and Laird 2011, 2013). Rodrigues et al. (2010; 2010) pro-
pose a technique based on relational reinforcement learning
to learn deterministic action models, and Rodrigues et al.
(2011) extend the approach to deal with non-deterministic
actions. These approaches are based on important technical
differences with respect to our work. Most important, the
main conceptual and practical difference is that all these ap-
proaches assume that the action to be executed is randomly
selected or given in input, and therefore do not deal with the
problem of guiding the exploration phase towards informa-
tive states, a key and promising feature of OLAM. The work
by Lamanna et al. (2021) proposes an online method to learn
planning domains by mapping continuous observations to
deterministic state transition systems. It uses a given PDDL
planning domain and a classical planner to heuristically ex-
plore the state space towards the problem goal. However, it

focuses on learning the final state machine of the planning
domain rather than PDDL action models like OLAM.

Our approach shares some similarities with the work on
planning by reinforcement learning (RL) (Sutton and Barto
1998). However, RL focuses on learning policies rather than
PDDL action models. Moreover, most often, in RL, actions
are represented as (probabilistic) state transitions, rather
than with symbolic action models.

Problem
LetP be a set of predicates with associated arity, of a first or-
der language, andO be a finite set of operator names with as-
sociated arity. Predicates and operators of arity n are called
n-ary predicates and n-ary operators. Given an n-tuple x =
〈x1, . . . , xn〉 of distinct symbols (constants or variables), let
P(x) be the set of atomic formulas p(xi1 , . . . , xim) obtained
by applying the m-ary predicate p ∈ P to any m-tuple of
symbols 〈xi1 , . . . , xim〉 in x (with 1 ≤ i1, . . . , im ≤ n). For
instance, if P contains the single binary predicate on, and
x = 〈x1, x2, x3〉. Then, P(x) = {on(xi, xj) | 1 ≤ i, j ≤
3}.
Definition 1 (Action schema). An action schema for an n-
ary operator name op ∈ O on the set of predicates P is a
tuple

〈
par(op), pre(op), eff+(op), eff−(op)

〉
, where par(op)

is a tuple of variables, pre(op), eff+(op), and eff−(op) are
three sets of atoms on P(par(op)).

Essentially, pre(op), eff+(op), and eff−(op) represent the
preconditions, positive, and negative effects of operator op.
Without loss of generality, we assume that operators have no
negative precondition. We also assume that the description
of the effects is consistent, i.e., eff+(op) ∩ eff−(op) = ∅.
Definition 2 (Ground action). The ground action a =
op(c1, . . . , cn) of an n-ary operator name op ∈ O w.r.t. the
constants c1, . . . , cn is the triple 〈pre(a), eff+(a), eff−(a)〉,
where pre(a) (resp. eff+(a), eff−(a)) is obtained by replac-
ing the i-th parameter of par(op) in pre(op) (resp. eff+(op),
eff−(op)) with ci.

We use the term lifted, as the opposite of grounded, to re-
fer to expressions and actions where constants have been re-
placed with parameters.

Definition 3 (Planning domain). A planning domainM is
a triple 〈P,O,H〉 where P is a set of predicates, O is a set
of operator names with their arity and, for every op ∈ O,H
is a function mapping an operator name op into an action
schema.

Definition 4 (Finite-State Machine of a planning domain).
The Finite-State Machine (FSM) of a planning domain
M = 〈P,O,H〉 for the set C of constants is the triple
M(C) = 〈S,A, δ〉 where S = 2P(C) is the set of all possible
subsets of facts; A is the set of all possible ground actions
of each n-ary operator name in O on any n-tuple of con-
stants in C; δ ⊆ S ×A×S is a transition relation such that
(s, a, s′) ∈ δ if pre(a) ⊆ s and s′ = s ∪ eff+(a) \ eff−(a).

A plan π inM(C) is a finite sequence of actions. A state
sn ∈ S is reachable from a state s0 ∈ S inM(C) if there

is a plan π = 〈a1, . . . , an〉 such that (si−1, ai, si) ∈ δ for
i = 1 . . . n.

Assuming that the sets P , O and C are known by the
agent, its task is to learn a planning domain by executing
the actions available in O over constants in C, observing,
and determining what are their preconditions and effects
on the environment described in terms of the properties in
P . In formal terms, the agent has to build an action model
M = 〈P,O,H〉, i.e., the preconditions and effects of every
action schema in the domain of H. We assume that the dy-
namics of the environment where the agent acts, which is un-
known by the agent, is fully described by the finite state ma-
chine M′(C), where M′ = 〈P,O,H′〉 is an action model
called Ground-Truth Model (GTM).

The following definitions state the notions of correct-
ness and integrity for the learned planning domain M =
〈P,O,H〉 w.r.t. the GTM.

Definition 5 (Correctness). Let M and M′ be two action
models andM(C) = 〈S,A, δ〉 andM′(C) = 〈S,A, δ′〉 be
their FSMs with respect to a set of constants C. We say that

1. M(C) correctly approximates M′(C) from a state s0 ∈
S if, for every state sn reachable from s0 in M(C),
〈sn, a, s〉 ∈ δ implies 〈sn, a, s′〉 ∈ δ′ for some s′ ⊇ s.

2. M(C) correctly approximates M′(C) if M(C) correctly
approximatesM′(C) from every state in S;

3. M correctly approximatesM′ ifM(C) correctly approx-
imatesM′(C) for every set of constants C.

A plan is valid when the actions in the plan are “executable”
and the plan achieves a given set of (positive) goals. There-
fore, when the learned model correctly approximates the
GTM, any valid plan computed by using the learned model
is also valid for the GTM.

Definition 6 (Integrity). LetM andM′ be two action mod-
els andM(C) = 〈S,A, δ〉 andM′(C) = 〈S,A, δ′〉 be their
FSMs with respect to a set of constants C. We say that

1. M(C) integrally approximatesM′(C) from a state s0 ∈
S if, for every state sn reachable from s0 in M(C),
〈sn, a, s′〉 ∈ δ′ implies 〈sn, a, s〉 ∈ δ for some s ⊇ s′;

2. M(C) integrally approximatesM′(C) ifM(C) integrally
approximatesM′(C) from every state in S;

3. M integrally approximates M′ if M(C) integrally ap-
proximatesM′(C) for every set of constants C.

Therefore, when the learned model integrally approximates
the GTM, any valid plan for the GTM is also a valid plan for
the learned model.

Learning algorithm
In the proposed approach, the agent constructs and executes
informative plan traces for learning the planning domain.
Algorithm 1 shows the pseudocode of the OLAM (Online
Learning of Action Models). The input of the algorithm are
the same sets of predicates and operator names (with their
associated arity) of the GTM, and a set C of constants rep-
resenting the objects of the environment explored by the
agent. OLAM produces in the output two planning domains

M andM−? . The former is such thatM(C) correctly and in-
tegrally approximatesM′(C) from the state of the environ-
ment when OLAM terminates. The latter correctly approxi-
matesM′.

We adopt the following notations. Let x = 〈x1, . . . , xn〉
and c = 〈c1, . . . , cn〉 two n-tuple of distinct parameters
and constants. If p is an m-ary predicate, p(x) denotes an
atom p(xi1 , . . . , xim) for some m-tuple of indexes 1 ≤
i1, . . . , im ≤ n; and p(c) the atom obtained by replacing
xi with ci in p(x). In the following the indexing will be left
implicit. OLAM incrementally builds the following sets:

1. pre(op), which contains the preconditions of the operator
op; it is initialized to the whole set of lifted atoms (line
2); an atom p(x) is removed from pre(op) whenever an
instance op(c) of op is executed successfully in a state s
and p(c) 6∈ s (line 19).

2. eff+
! (op) and eff−! (op), which contains the set of lifted

positive and negative effects of op learned by the agent;
they are initially empty (line 3); a lifted atom p(x) is
added to eff+

! (op) (resp. eff−! (op)) if the execution of an
instance op(c) of op in state s makes p(c) become true
(resp. false) in the resulting state (lines 20-21).

3. eff+
? (op) and eff−? (op), which are sets of lifted atoms that

could become part of the positive or negative effects of op;
they are initialized to the entire set of lifted atoms (line
2); a lifted atom p(x) is removed from eff+

? (op) (resp.
eff−? (op)) if p(x) is discovered to be a positive or negative
effect or if the atom p(c) is false (resp. true) in a state s
and remains false (resp. true) after executing successfully
an instance op(c) of op in s (lines 22-23).

4. pre⊥(op), which is a set of sets of lifted preconditions for
op such that in every non empty set in pre⊥(op) there is
at least one precondition of op; pre⊥(op) is initialized to
a set including only the empty set (line 4); pre⊥(op) is
augmented by the set formed by any lifted fact p(x) such
that p(c) is false in a state s, if the execution of an instance
op(c) of op fails in s (line 26).

5. eff+
!?(op) and eff−!?(op), which are derived sets denoting

eff+
! (op) ∪ eff+

? (op) and eff−! (op) ∪ eff−? (op).

At each iteration of the external loop (lines 7–31), the
agent selects a state s′ and a ground action op′(c′). s′ is
reachable from the current state with the modelM learned
so far; the ground action op′(c′) is such that its execution
in s′ could provide to the agent some additional information
about the preconditions, the positive, or the negative effects
of op′. This condition is formalised by (2)–(4). In partic-
ular, if condition (2) holds, the preconditions of op′ could
be refined by executing op′(c′) in s′, because s′ does not
contain all the preconditions of op′(c′). Indeed if op′(c′)
will succeed, then the preconditions which are false in s′

can be eliminated. If condition (3) (resp. (4)) holds, some
positive (resp. negative) effects of op′ could be learned, be-
cause op′(c′) is executable in s′ and s′ does not contain all
the facts in eff+

? (op
′(c′)) (resp. contains at least a fact in

eff−? (op
′(c′))). Indeed, the facts in eff+

? (op
′(c′)) but not in

s′ which become true can be added to the positive effects.

Similarly, the facts that are in eff−? (op
′(c′))) and in s′ which

become false can be added to the negative effects. The se-
lection of such a state s′ and action op′(c′) is done by con-
structing a plan from the current state s to a state s′ which
satisfies conditions (2)–(4) for an op′(c′) (line 8). If there
is more than one action op′(c′) that satisfies conditions (2)–
(4) in s′, one of them is randomly selected. The choice of
s′, op′(c′) and the associated plan is obtained by invoking
PLAN with the following goal:

G =
∨

op(c)∈A
P+P−E+E−satisfy (i–vi)

 ∧
p(c)∈P+∪E−

p(c) ∧
∧

p(c)∈P−∪E+

¬p(c)

(1)

(i) P− ∪ E+ ∪ E− 6= ∅, (ii) P+ ∩ P− = ∅,
(iii) P+ ∪ P− = pre(op(c)), (iv) P− 6∈ pre⊥(op(c)) \ {∅},
(v) E+ ⊆ eff+

? (op(c)), (vi) E− ⊆ eff−? (op(c)).

Each disjunct in (1) describes a set of states from which the
agent can potentially learn something by executing op(c).
P+ and P− partition the preconditions of op(c) so that the
atoms in P+ are true in s′, the atoms in P− are false in s′,
and set P− has not already been checked to be necessary
for successfully executing op(c). E+ is a subset of possi-
ble positive effects of op(c) which are false in s′ and can
become true by executing op(c); similarly for E−. Notice
that for every state s′ that contains P+ and E− and does not
contain P− and E+, and every action op′(c′) such that (iv)
and (v) and (vi) hold, when condition (2) is satisfied by s′
and op′(c′), P− is not empty; when condition (3) is satisfied
by s′ and op′(c′), E+ is not empty; finally, when condition
(4) is satisfied by s′ and op′(c′), E− is not empty.

In the internal loop (lines 9–30), OLAM executes π and if
it manages to successfully complete the execution of π (i.e.,
π = 〈〉, line 10) the ground action op′(c′) will be executed in
the environment where the agent acts (line 17). The dynam-
ics of such an environment is unknown by the agent, and
it determines the result returned by call EXECUTE(op(c)).
When a ground action op(c) is successfully executed, OLAM
observes the state of the environment snext resulting from
the execution (line 18), and updates sets pre(op), eff

+/−
! (op)

and eff
+/−
? (op) according to the criteria defined above (lines

19–23). If the op(c) execution fails in the environment,
pre⊥(op) is extended as described above, and π is reset to
nil since its execution deviates from the expected trajectory
computed according to the domainM learned so far (lines
26-27).

Termination, correctness and integrity
Given an n-ary operator, we assume that it can be grounded
only with n different constants. This assumption can be done
without loss of generality, at the price of introducing ad-
ditional operators with only one parameter in place of the
set of parameters that can be grounded with the same con-
stant. We also suppose that OLAM is run in the environment
M′(C) where C is a set of at least maxop∈O|par(op)| con-
stants.

Algorithm 1 OLAM

Require: M = 〈P,O, {par(op), ∅, ∅}op∈O〉, C
1: s← OBSERVE()
2: ∀op ∈ O, eff−? (op)← eff+

? (op)← pre(op)← P(par(op))
3: ∀op ∈ O, eff−! (op)← eff+

! (op)← ∅
4: ∀op ∈ O, pre⊥(op)← {∅}
5: M←

〈
P,O, {par(op), pre(op), eff+

! (op), eff−! }op∈O
〉

6: π ← nil
7: while ∃s′, op′(c′) such that s′ is reachable from s by M(C)

and (2) ∨ (3) ∨ (4) holds do
8: π ← PLAN(M(C), s, s′)
9: while π 6= nil do

10: if π 6= 〈〉 then
11: op(c)← POP(π)
12: else
13: op(c)← op′(c′)
14: π ← nil
15: end if
16: x← par(op)
17: if EXECUTE(op(c)) does not fail then
18: snext ← OBSERVE()
19: pre(op)← {p(x) ∈ pre(op) | p(c) ∈ s}
20: eff+

! (op)← eff+
! (op) ∪ {p(x) | p(c) ∈ snext \ s}

21: eff−! (op)← eff−! (op) ∪ {p(x) | p(c) ∈ s \ snext}
22: eff+

? (op)← eff+
? (op) \ {p(x) | p(c) /∈ s ∩ snext}

23: eff−? (op)← eff−? (op) \ {p(x) | p(c) ∈ s ∪ snext}
24: s← snext

25: else
26: pre⊥(op)← pre⊥(op) ∪ {{p(x)∈ pre(op) | p(c) 6∈

s}}
27: π ← nil
28: end if
29: M←

〈
P,O, {par(op), pre(op), eff+

! (op), eff−! }op∈O
〉

30: end while
31: end while
32: M−? ←

〈
P,O, {par(op), pre(op), eff+

! (op), eff−!?}op∈O
〉

33: returnM,M−?
Conditions in line 7:

pre(op′(c′)) \ s′ 6∈ pre⊥(op′(c′)) (2)
pre(op′(c′)) ⊆ s′ and eff+

? (op′(c′)) 6⊆ s′ (3)
pre(op′(c′)) ⊆ s′ and eff−? (op′(c′)) ∩ s′ 6= ∅ (4)

In the following, the transitions relations ofM,M′, and
M−? are denoted by δ, δ′, and δ−? . Moreover, the sets of pre-
conditions and positive/negative effects of any operator op of
M′ are denoted by pre′(op) and eff ′

+/−
(op), respectively.

Lemma 1. For every n-ary operator op with parameters
par(op) = x = (x1, . . . , xn), every m-ary predicate p, and
every n-tuple of distinct constants c = (c1, . . . , cn) in C:

1. p(c′) ∈ pre(op(c)) iff p(x′) ∈ pre(op)

2. p(c′) ∈ eff+(op(c)) iff p(x′) ∈ eff+(op)

3. p(c′) ∈ eff−(op(c)) iff p(x′) ∈ eff−(op)

where c′ = (ci1 , . . . , cim) and x′ = (xi1 , . . . , xim) with
1 ≤ ij ≤ n for 1 ≤ j ≤ m.

Proof. Let us consider the case 1 (similar proofs can be

derived for cases 2 and 3). Since pre(op) cannot contain
constants, the only way to obtain p(c′) in pre(op(c)) is
by grounding some precondition p(x′) ∈ pre(op) with c′.
Since we require that every parameter in par(op) is in-
stantiated with a different constant, the only way to obtain
p(ci1 , . . . , cim) is when x′ = (xi1 , . . . , xim). The oppo-
site direction derives by the fact that if p(x′) ∈ pre(op),
by grounding op’s parameters in p(x′) with c′, we obtain
p(c′) ∈ pre(op(c)).

Lemma 2. At every execution step of OLAM pre(op) ⊇
pre′(op).

Proof. In OLAM, pre(op) is initialized by P(par(op)), i.e.,
all the possible preconditions on the parameters of op (line
2). Then, a precondition p(x) is removed from pre(op) when
an action op(c) is executed with success in s and p(c) 6∈ s.
(line 19). This implies that p(c) 6∈ pre′(op(c)). By lemma 1
we have that p(x) 6∈ pre′(op). This guarantees that at every
execution step of the algorithm pre(op) ⊇ pre′(op).

Lemma 3. At every execution step of OLAM, if pre(op(c)) ⊆
OBSERVE(), then EXECUTE(op(c)) does not fail.

Proof. Let s = OBSERVE() be the result of the observation
of the environment at some execution step of OLAM, i.e.,
the current state according to M′(C). By Lemmas 1-2, if
pre(op(c)) ⊆ s then pre′(op(c)) ⊆ s, which guarantees that
action op(c) can be executed with success from the current
state according toM′(C).

Theorem 1 (Termination). Algorithm OLAM terminates.

Proof. First of all notice that for every operator op the fol-
lowing properties hold:

• The size of P(par(op)) and 2P(par(op)) are finite and
therefore pre(op), eff+

? (op), eff−? (op) are initialized to
finite sets, eff+

! (op), eff−! (op) cannot be larger than
P(par(op)), and pre⊥(op) cannot be larger then the size
of 2P(par(op)).

• The internal loop (lines 9–30) always terminates because
at every iteration either the size of the plan reduces of 1
unit, or the plan is set to nil, and if the size is 0 the plan
is set to nil.

Given the above points, to show termination, we have to
prove that at every iteration of the external loop (7–31) one
of the following facts holds for some operator op:

(a) the size of pre(op), eff+
? (op), or eff−? (op) is reduced;

(b) the size of pre⊥(op), eff+
! (op), or eff−! (op) is increased.

At each iteration of the external loop (lines 7–31) OLAM se-
lects an action op′(c′) and a state s′ reachable from the cur-
rent state s with M that satisfy condition (2), (3) or (4). It
produces a plan π = (a1, . . . , ak) from the current state to
s′, and it executes the plan in the internal loop (lines 9–30).
We consider separately the case where (i) π is successfully
executed and the state s′ is achieved, and (ii) the execution
of π fails or the reached state is different from s′.

(i) π successfully achieves s′: after k iterations of the in-
ternal loop, plan π becomes empty, and the condition
at line 10 becomes true. Then, op′(c′) is executed in s′
(line 11). If op′(c′) is executed successfully, then since
op′(c′) and s′ satisfies at least one of the three condi-
tions (2), (3) and (4), the following applies. If (2) holds
then pre(op(c)) \ s′ 6= ∅ and therefore pre(op′) is re-
duced (line 19); if (3) holds then eff+

? (op) is reduced
(line 22); if (4) holds then eff−? (op) is reduced (line
23). If op′(c′) fails in the state s′ (line 25), then by
Lemma 3 it means that pre(op′(c′)) 6⊆ s′, and there-
fore conditions (3) and (4) are false, which implies that
condition (2) is true. This guarantees that at line 26
pre⊥(op) is extended.

(ii) π fails to achieve s′: Since plan π is computed accord-
ing to M and, by Lemmas 1-2, for any action op(c)
the set of preconditions of op(c) in M(C) contains
the preconditions of op(c) in M′(C), then the failure
of π implies that after j ≤ k iterations of the inter-
nal loop, the observed state (computed by executing
a1, . . . , aj from s inM′(C)) is different from the state
computed by executing a1, . . . , aj from s inM. Let i
be the smallest of such a j, and ai = opi(ci). Then
(si−1, opi(ci), si) ∈ δ and (si−1, opi(ci), s

′
i) ∈ δ′

with s′i 6= si. Since ai−1 = opi−1(ci−1) modifies only
the atoms containing the constants ci−1 contained in si
and s′i differ on some p(ci−1). If p(ci−1) ∈ s′i \ si
then, at the i − 1-th iteration of the internal loop,
eff+

! (opi−1) is extended (line 20); if p(ci−1) ∈ si \ s′i,
then eff−! (opi−1) is extended (line 21).

Lemma 4. At every execution step of OLAM, eff
+/−
! (op) ⊆

eff ′
+/−

(op).

Proof. In OLAM, eff
+/−
! (op) are initialized by the empty set

(line 3), and therefore eff
+/−
! (op) ⊆ eff ′

+/−
(op) initially

holds. Suppose that at some point p(x) ∈ eff+
! (op). Then,

there exists a state s and an action op(c) such that the execu-
tion of op(c) from s adds p(x) to eff+

! (op), which implies
p(c) 6∈ s and p(c) ∈ snext (line 20), where snext is the
state resulting from the execution of op(c) inM′(C). Since
snext ⊆ s ∪ eff ′

+
(op(c)), then p(c) ∈ eff ′

+
(op(c)). By

Lemma 1, we have that p(x) ∈ eff ′
+
(op). Similar proof can

be done to show that eff−! (op) ⊆ eff ′
−
(op).

Lemma 5. At every execution step of OLAM, eff
+/−
!? (op) ⊇

eff ′
+/−

(op).

Proof. In OLAM, eff−? (op) is initialized by P(par(op)) (line
2), and therefore eff−!?(op) ⊇ eff−? ⊇ eff ′

−
(op) initially

holds. Suppose that at some point p(x) 6∈ eff−!?(op). This
means that there is a state s and an action op(c) such that
the execution of op(c) from s removes p(x) from eff−? (op),
which implies that p(c) ∈ s∪snext (line 21), where snext =

s∪eff ′
+
(op(c))\eff ′

−
(op(c)) is the state resulting from the

execution of op(c) inM′(C). If p(c) 6∈ snext then p(c) ∈ s
and this implies that p(x) is added to eff−! (op), which con-
tradicts the fact that p(x) 6∈ eff−!?(op); therefore we have
that p(c) ∈ snext, which implies that p(x) 6∈ eff ′

−
(op), as

required.
In OLAM, eff+

? (op) is initialized by P(par(op)) (line 2),
and therefore eff+

!?(op) ⊇ eff+
? ⊇ eff ′

+
(op) initially holds.

Suppose that at some point p(x) 6∈ eff+
!?(op). This means

that there is a state s and an action op(c) such that the exe-
cution of op(c) from s removes p(x) from eff+

? (op), which
implies that p(c) 6∈ s ∩ snext (line 22), where snext =

s ∪ eff ′
+
(op(c)) \ eff ′

−
(op(c)) is the state resulting from

the execution of op(c) inM′(C). Let distinguish whether or
not p(c) ∈ snext. If p(c) 6∈ snext then p(x) 6∈ eff ′

+
(op),

as required. If p(c) ∈ snext then p(c) 6∈ s, which implies
that that p(x) is added to eff+

! (op(c)) at line 20 and there-
fore p(x) ∈ eff+

?!(op), which contradicts the hypothesis that
p(x) 6∈ eff+

?!(op).

In the rest of the section, we study the properties of cor-
rectness and integrity for the learned modelsM andM−? .

Theorem 2 (Correctness ofM−?). M−? correctly approxi-
matesM′.

Proof. Let s be a state of M−? (C′) for any set of con-
stants C′ possibly different from C, and let (s, op(c), s−?) ∈
δ−? . By Lemmas 1-2, pre(op(c)) ⊇ pre′(op(c)) and there-
fore there exists a tuple (s, op(c), s′) ∈ δ′. We have that
s−? = s ∪ eff+

! (op(c)) \ eff−! (op) \ eff−? (op). By Lem-
mas 1-4, eff+

! (op(c)) ⊆ eff ′
+
(op(c)); by Lemmas 1-5,

eff ′
−
(op(c)) ⊆ eff−!?(op(c)) = eff−! (op(c)) ∪ eff−? (op(c)).

Since s′ = s ∪ eff ′
+
(op(c)) \ eff ′

−
(op(c)), it must be that

s−? ⊆ s′.

Theorem 3 (Correctness ofM). M(C) correctly approxi-
matesM′(C) from the final state of OLAM.

Proof. Let s reachable from sf in M(C). Suppose that
(s, op(c), s′′) ∈ δ. By Lemmas 1-2, pre(op(c)) ⊇
pre′(op(c)) and therefore there exists a tuple (s, op(c), s′) ∈
δ′. Suppose that s′′ 6⊆ s′, which implies that there is a
p(c) ∈ s′′ which is not in s′. This can be caused by some
missing negative effect in eff−! (op) or some extra positive
effect in eff+

! (op). The latter case is excluded by Lemma 4.
Suppose that p(x) ∈ eff ′

−
(op) but p(x) 6∈ eff−! (op). From

Lemma 5 we have that eff ′
−
(op) ⊆ eff−!?(op). The fact that

eff−! (op) ⊆ eff ′
−
(op) implies p(x) ∈ eff−? (op). Since s is

reachable from the final state sf viaM, then condition (4)
must be false, which means that eff−? (op(c)) ∩ s = ∅, and
therefore that p(c) 6∈ s. Therefore if p(c) ∈ s′′, then it has
been added by p(x) ∈ eff+

! (op) ⊆ eff ′
+
(op). But this con-

tradicts the fact that p(x) ∈ eff ′
−
(op).

Lemma 6. At any execution step of OLAM if φ ∈ pre⊥(op)
and φ 6= ∅ then φ ∩ pre′(op) 6= ∅.

Proof. If φ ∈ pre⊥(op) and φ 6= ∅, then φ has been added
because of the failure of an action op(c) in a state s and
φ = {p(x) ∈ pre(op) | p(c) 6∈ s}. The failure of op(c) in
s implies that there is a p(x) ∈ pre′(op) such that p(c) 6∈ s.
The fact that pre(op) ⊇ pre′(op) implies that p(x) ∈ φ and
therefore p(x) ∈ φ ∩ pre′(op). Hence we can conclude that
φ ∩ pre′(op) 6= ∅.

Theorem 4 (Integrity of M). M(C) integrally approxi-
matesM′(C) from the final state of OLAM.

Proof. Suppose that s is reachable form the final state of
OLAM via M(C) and that op(c) is executable from s ac-
cording to M′(C), i.e., that pre′(op(c)) ⊆ s. First, let
us show that op(c) is also executable by M(C), i.e., that
pre(op(c)) ⊆ s. Suppose the contrary, i.e., that pre(op(c)) \
s 6= ∅. Since s is reachable from sf withM(C), the fact that
OLAM terminates at sf implies that condition (2) is false.
This implies that pre(op(c)) \ s ∈ pre⊥(op(c)), which im-
plies that φ = {p(x) ∈ pre(op) | p(c) 6∈ s} ∈ pre⊥(op).
Furthermore φ is not empty since pre(op(c)) \ s 6= ∅. By
Lemma 6 we have that there is p(x) ∈ pre′(op) such that
p(c) 6∈ s, which implies that op(c) is not executable in s by
M′(C), which is a contradiction.

Let (s, op(c), s′′) ∈ δ and (s, op(c), s′) ∈ δ′. Suppose
by contradiction that s′ 6⊆ s′′, which implies that there is a
p(c) ∈ s′ which is not in s′′. This can be caused by some
missing positive effect in eff+

! (op) or some extra negative
effect in eff−! (op). The latter case is excluded by Lemma 4.
Suppose that p(x) ∈ eff ′

+
(op) but p(x) 6∈ eff+

! (op). From
Lemma 5 we have that eff ′

+
(op) ⊆ eff+

!?(op). The fact that
eff+

! (op) ⊆ eff ′
+
(op) implies p(x) ∈ eff+

? (op). Since s
is reachable from the final state viaM, condition (3) must
be false and therefore eff+

? (op(c)) ⊆ s. This implies that
p(c) ∈ s. Therefore if p(c) 6∈ s′′, then it has been deleted by
p(x) ∈ eff−! (op) ⊆ eff ′

−
(op). But this contradicts the fact

that p(x) ∈ eff ′
+
(op).

The learned model M approximates the GTM from the
final state sf of OLAM both correctly and integrally. This
implies that all and only the valid plans computed from sf
viaM are valid plans from sf via the GTM. Therefore, if a
complete algorithm fails to reach a given set of goals from sf
viaM, then the goals cannot be reached also via the GTM.

Experiments
We evaluate the effectiveness of OLAM for online learning
planning domains on 23 planning domains, including the
domains from the learning tracks of the past IPCs and the
domains used by Aineto, Jiménez Celorrio, and Onaindia
(2019). For each domain, using an available problem gen-
erator, we randomly generated 10 small or middle-size in-
stances with a number of objects ranging from 3 to 241 and
consequently a number of potential grounded actions rang-
ing from 12 to about 3.16 · 106. For every domain OLAM is

Table 1: Number of instances used to learnM (column 2),
precision and recall over the preconditions, positive and neg-
ative effects ofM (columns 3–8), overall precision and re-
call ofM (columns 9-10).

Domain #I Ppre Rpre Peff+ Reff+ Peff− Reff− P R

barman 4 0.95 1 1 1 1 1 0.97 1
blocksworld 1 1 1 1 1 1 1 1 1
depots 1 0.94 1 1 1 1 1 0.97 1
driverlog 2 0.88 1 1 1 1 1 0.93 1
elevators 3 0.81 1 1 1 1 1 0.88 1
ferry 1 0.88 1 1 1 1 1 0.94 1
floortile 1 0.71 1 1 1 1 1 0.83 1
gold-miner 2 0.68 1 1 1 1 1 0.80 1
grid 2 0.71 1 1 1 1 1 0.82 1
gripper 1 1 1 1 1 1 1 1 1
hanoi 1 0.80 1 1 1 1 1 0.88 1
matching-bw 3 0.97 1 1 1 1 1 0.99 1
miconic 1 1 1 1 1 1 1 1 1
n-puzzle 1 0.75 1 1 1 1 1 0.88 1
nomystery 1 0.75 1 1 1 1 1 0.85 1
parking 2 0.78 1 1 1 1 1 0.89 1
rover 5 0.78 1 1 0.65 1 0.54 0.83 0.84
satellite 1 1 1 1 1 1 1 1 1
sokoban 1 0.80 1 1 1 1 1 0.89 1
spanner 1 0.90 1 1 1 1 1 0.94 1
tpp 3 0.94 1 1 1 1 1 0.97 1
transport 1 0.91 1 1 1 1 1 0.95 1
zenotravel 1 1 1 1 1 1 1 1 1

run on all the generated problem instances, from the small-
est to the largest. On the first instance, OLAM takes in input
the empty set of preconditions, positive and negative effects;
for the successive runs, OLAM takes in input the planning
domain M learned at the previous run. In OLAM, the calls
EXECUTE and OBSERVE (lines 17-18) are implemented by a
simulator of the IPC domain. Notice that the transition func-
tion of such a model is not known by the agent, who can
only ask to execute actions and observe the current state.
For function PLAN (line 8), we adopt FASTDOWNWARD
(Helmert 2006) using lazy greedy best-first search with the
FF heuristic (Hoffmann 2001) and the context-enhanced ad-
ditive heuristic (Helmert and Geffner 2008), and with a 60
seconds timeout. FastDownward supports goal formulas ex-
pressed as a disjunction of conjunctions of atoms. As input
goal formula we give the disjunction in Equation (1) (with-
out the subsumed disjuncts). All experiments were run on
an Intel Xeon Skylake 2.3 GHz with 8 cores and 64 GB of
RAM.

The learned planning domain is compared with the GTM,
as done by Aineto, Jiménez Celorrio, and Onaindia (2019),
by precision and recall measures. Given a learned modelM
and GTMM′, we define precision and recall for precondi-
tions (Ppre, Rpre), positive and negative effects (Peff− , Peff+ ,
Reff− , Reff+). Specifically, Ppre and Rpre are defined as fol-
lows:

Ppre =
∑

op|pre(op)∩ pre′(op)|∑
op|pre(op)| Rpre =

∑
op|pre(op)∩ pre′(op)|∑

op|pre′(op)| .

Intuitively, they measure the (relative) amount of extra

learned preconditions w.r.t. the GTM, and the (relative)
amount of missing preconditions w.r.t. the GTM, respec-
tively. The lower these amounts, the greater the measures.
Similarly we define precision and recall for eff− and eff+.
If the precision and recall measures for pre, eff− and eff+ is
1, then the learned model is exactly the same as in the GTM
for pre, eff− and eff+, respectively. The overall precision P
and recallR are defined considering pre, eff−, eff+ together.
I.e.,

P =
∑

op|pre(op)∩ pre(op)′|+|eff+(op)∩ eff′+(op)′|+|eff−(op)∩ eff′−(op)′|∑
op|pre(op)|+|eff+(op)|+|eff−(op)| ,

and similarly for R.
Table 1 summarizes the efficacy ofM w.r.t. the GTM in

terms of precision and recall. By construction of sets pre(op)

and eff
+/−
! (op) of every operator op, Rpre, Peff+ , and Peff−

ofM must be equal to 1, i.e., there is no missing precondi-
tion and extra effect in the learned modelM w.r.t. the GTM.
This is confirmed by the results in Table 1. Moreover, Ppre is
always quite high, although usually lower than 1, i.e., there
are few extra preconditions in the learned model w.r.t. the
GTM. The extra learned preconditions are static predicates
such that, when the action is grounded, the corresponding
grounded preconditions are true in all the states reachable
from the initial state. This prevents the remotion of these
extra preconditions from a correct learned model, like M.
The recall over the positive/negative effects is always equal
to 1 for every domain but ROVER, i.e., there are no miss-
ing effects (except for ROVER) in the learned model w.r.t.
the GTM. Finally, the overall precision and recall ofM are
quite close or equal to 1.

The results in Table 1 also show that domain M can be
learned using very few problems, often using only a single
problem. Note that such a domain is learned by few small
problems, and it does not mention their constants, i.e., it is
general and hence suitable even for much larger problems.
This shows that overall OLAM is able to effectively general-
ize between the experience derived from small environments
and the future experience in large environments.

We also study the efficacy of M−? w.r.t. the GTM. The
difference between the learned modelsM andM−? consists
in the fact that M−? also includes set eff−? (op) as negative
effects of an operator op. Therefore, the precision and the
recall over the preconditions and the positive effects ofM−?
are the same as in Table 1. Table 2 gives the precision and
recall over the negative effects ofM−? and over all domain
M−? . For this study we considerM−? with and without as-
suming eff ′

−
(op) ⊆ pre′(op), i.e., when this assumption is

made, the atoms in eff−? (op) that are not in the preconditions
of an operator are removed. By construction of set eff−!?,
Reff− must be equal to 1. Surprisingly, this is false for do-
mains GOLD-MINER and ROVER. The reason why this hap-
pens is that for these domains an assumption of ours does not
hold: ROVER is a special domain including operators with
inconsistent effects, i.e., eff ′

+
(op)∩eff ′

−
(op) 6= ∅, for some

operators. For GOLD-MINER, the assumption eff ′
−
(op) ⊆

pre′(op) does not hold. This assumption is violated also in
domains PARKING, SATELLITE and MATCHING-BW, but

Table 2: Precision and recall over the negative effects
of M−? and overall model M−? with the assumption
eff ′
−
(op) ⊆ pre′(op) (columns 2–5), and without this as-

sumption (columns 6–9).

wth assumption without assumption
Domain Peff− Reff− P R Peff− Reff− P R
barman 1 1 0.97 1 0.24 1 0.56 1
blocksworld 1 1 1 1 0.43 1 0.69 1
depots 1 1 0.97 1 0.56 1 0.80 1
driverlog 1 1 0.93 1 0.23 1 0.53 1
elevators 1 1 0.88 1 0.15 1 0.42 1
ferry 1 1 0.94 1 0.50 1 0.75 1
floortile 1 1 0.83 1 0.10 1 0.29 1
gold-miner 1 0.82 0.80 0.95 0.18 1 0.41 1
grid 1 1 0.82 1 0.28 1 0.55 1
gripper 1 1 1 1 1 1 1 1
hanoi 1 1 0.88 1 1 1 0.88 1
matching-bw 1 1 0.99 1 0.32 1 0.65 1
miconic 1 1 1 1 0.23 1 0.62 1
n-puzzle 1 1 0.88 1 0.50 1 0.70 1
nomystery 1 1 0.85 1 0.10 1 0.30 1
parking 1 1 0.89 1 0.35 1 0.60 1
rover 1 0.54 0.83 0.84 0.16 0.54 0.55 0.84
satellite 1 1 1 1 0.67 1 0.92 1
sokoban 1 1 0.89 1 0.25 1 0.53 1
spanner 1 1 0.94 1 0.40 1 0.70 1
tpp 1 1 0.97 1 0.15 1 0.42 1
transport 1 1 0.95 1 0.33 1 0.65 1
zenotravel 1 1 1 1 0.33 1 0.67 1

for these domains there is no missing negative effect inM−! ,
since OLAM on line 21 learns eff−! regardless of this assump-
tion. Interestingly, P−eff with this assumption is always equal
to 1, while without the assumption it is almost always quite
low. This gap gives evidence that such an assumption can
be very useful for removing extra negative effects from the
learned domain.

We compare OLAM with a version of the algorithm that
explores the world randomly. The random strategy reaches
an average precision and recall of 0.45 and 0.63, against the
average precision and recall of 0.99 and 0.92 obtained by
OLAM, which shows that the usage of the learned model is
extremely helpful.

In the last experiment we compare the online learning of
OLAM with the offline learning method proposed by Fama
(Aineto, Jiménez Celorrio, and Onaindia 2019). Although
the output of FAMA is the same as OLAM, i.e., the learned
planning domain, it is worth noting that the input is quite
different. In addition to our input knowledge, Fama takes
as input a set of plans with their state trajectories. Since
OLAM does not support partial observability, we set Fama
for working in a fully observable environment, and con-
sidered the same sets of plan traces and planning domains
(but VISITALL and ZENOTRAVEL) as in (Aineto, Jiménez
Celorrio, and Onaindia 2019). The set of plan traces con-
sists of 10 traces with 10 states; the set of planning domains
does not contain ZENOTRAVEL and VISITALL, because the
distributed version of Fama finds no solution for ZENO-

Table 3: CPU-seconds, precision and recall of OLAM
(columns 2–4) and Fama (columns 5–7); difference between
number of actions executed by Fama and OLAM (column
8): negative values mean that OLAM executes fewer actions.
Bold values indicate best results.

OLAM Fama
Domain Time P R Time P R ∆ acts
blocksworld 5.03 1 1 510 1 1 -80
driverlog 20.42 0.93 1 349 0.79 0.85 -43
ferry 7.54 0.94 1 267 0.80 0.93 -85
floortile 47.34 0.83 1 517 0.82 0.78 -15
grid 36.92 0.82 1 306 0.81 0.74 -1
gripper 3.50 1 1 165 0.86 0.93 -89
hanoi 2.38 0.88 1 818 0.88 0.86 -96
miconic 4.24 1 1 200 0.81 1 -78
n-puzzle 1.97 0.88 1 23 0.86 1 -91
parking 183.94 0.89 1 895 0.84 0.84 -47
rover 154.10 0.83 0.84 629 0.51 0.53 175
satellite 11.26 1 1 65 0.70 0.89 -54
transport 74.98 0.95 1 280 0.80 0.89 -32

TRAVEL, and there is no problem generator available for
VISITALL. Since Fama adopts the assumption eff ′

−
(op) ⊆

pre′(op) for any operator op, we compared the planning do-
main derived from Fama withM−? using the same assump-
tion. We obtained similar results from the comparison be-
tween Fama and the other learned domainM.

Table 3 compares OLAM and Fama. OLAM obtains better
or equal precision and recall, and generally it is also much
faster. In all the domains but ROVER, OLAM executes less
actions than Fama. We think that the difference for ROVER
is related to the consistent-effects assumption made in OLAM
that in ROVER does not hold. Overall, learning the planning
domain online is much more effective than learning it of-
fline. In our online approach, indeed, the agent selects the
goals to reach and actions to execute to optimize learning,
while in offline approaches actions are provided in the input
traces.

Conclusions
The paper proposes an online algorithm, OLAM, for learn-
ing PDDL planning domain under the assumption of full ob-
servability. OLAM incrementally learns an action model by
selecting goals to reach and actions to execute that allow
to acquire useful information about the operators. The pa-
per shows some important theoretical properties of OLAM
concerning the completeness and integrity of the learned
models. An implementation of OLAM shows good learning
performance on a large set of benchmarks from the IPCs,
and outperforms a state-of-the-art method for learning ac-
tion models offline. OLAM works with full observability; ex-
tension to partial observability is part of the future work.

Acknowledgements
This work is partially supported by the EU ICT-48 2020
project TAILOR (No. 952215).

References
Aineto, D.; Jiménez, S.; and Onaindia, E. 2018. Learning
STRIPS action models with classical planning. In ICAPS.
Aineto, D.; Jiménez Celorrio, S.; and Onaindia, E. 2019.
Learning action models with minimal observability. Artif.
Intell. 275: 104 – 137. ISSN 0004-3702.
Amir, E.; and Chang, A. 2008. Learning Partially Observ-
able Deterministic Action Models. J. Artif. Intell. Res. 33:
349–402.
Bonet, B.; and Geffner, H. 2020. Learning First-Order Sym-
bolic Representations for Planning from the Structure of the
State Space. In ECAI.
Certicky, M. 2014. Real-time action model learning with
online algorithm 3SG. Applied Artificial Intelligence 28(7):
690–711.
Cresswell, S.; McCluskey, T. L.; and West, M. M. 2013. Ac-
quiring planning domain models using LOCM. Knowledge
Eng. Review 28(2): 195–213.
Fern, A.; Yoon, S. W.; and Givan, R. 2004. Learning
Domain-Specific Control Knowledge from Random Walks.
In ICAPS.
Garcı́a-Martı́nez, R.; and Borrajo, D. 2000. An Integrated
Approach of Learning, Planning, and Execution. J. Intell.
Robotic Syst. 29(1): 47–78.
Gil, Y. 1994a. Learning by Experimentation: Incremental
Refinement of Incomplete Planning Domains. In ICML.
Gil, Y. 1994b. Learning New Planning Operators by explo-
ration and Experimentation. In AAAI.
Helmert, M. 2006. The Fast Downward Planning System. J.
Artif. Intell. Res. 26: 191–246.
Helmert, M.; and Geffner, H. 2008. Unifying the Causal
Graph and Additive Heuristics. In ICAPS, 140–147.
Hoffmann, J. 2001. FF: The fast-forward planning system.
AI magazine 22(3): 57–57.
Kitano, H.; and Tadokoro, S. 2001. RoboCup Rescue: A
Grand Challenge for Multiagent and Intelligent Systems. AI
Mag. 22(1): 39–52.
Lamanna, L.; Gerevini, A.; Saetti, A.; Serafini, L.; and
Traverso, P. 2021. On-line Learning of Planning Domains
from Sensor Data in PAL: Scaling up to Large State Spaces.
In AAAI.
Mourão, K.; Zettlemoyer, L. S.; Petrick, R. P. A.; and Steed-
man, M. 2012. Learning STRIPS Operators from Noisy and
Incomplete Observations. In UAI.
Newton, M. A. H.; Levine, J.; Fox, M.; and Long, D. 2007.
Learning Macro-Actions for Arbitrary Planners and Do-
mains. In ICAPS.
Rodrigues, C.; Gérard, P.; and Rouveirol, C. 2010. Incre-
mental Learning of Relational Action Models in Noisy En-
vironments. In ILP.
Rodrigues, C.; Gérard, P.; Rouveirol, C.; and Soldano, H.
2010. Incremental Learning of Relational Action Rules. In
ICMLA.

Rodrigues, C.; Gérard, P.; Rouveirol, C.; and Soldano, H.
2011. Active Learning of Relational Action Models. In ILP.
Stachniss, C.; Leonard, J. J.; and Thrun, S. 2016. Simulta-
neous Localization and Mapping. In Springer Handbook of
Robotics, Springer Handbooks, 1153–1176. Springer.
Sutton, R. S.; and Barto, A. G. 1998. Reinforcement learn-
ing - an introduction. Adaptive computation and machine
learning. MIT Press.
Walsh, T. J.; and Littman, M. L. 2008. Efficient learning of
action schemas and web-service descriptions. In AAAI.
Wang, X. 1996. Planning While Learning Operators. In
AAAI.
Xu, J. Z.; and Laird, J. E. 2010. Instance-Based Online
Learning of Deterministic Relational Action Models. In
AAAI.
Xu, J. Z.; and Laird, J. E. 2011. Combining Learned Discrete
and Continuous Action Models. In AAAI.
Xu, J. Z. Y.; and Laird, J. E. 2013. Learning Integrated Sym-
bolic and Continuous Action Models for Continuous Do-
mains. In AAAI.
Yang, Q.; Wu, K.; and Jang, Y. 2007. Learning action mod-
els from plan examples using weighted MAX-SAT. Artif.
Intell. 171: 107–143.
Zhuo, H. H.; and Kambhampati, S. 2013. Action-Model Ac-
quisition from Noisy Plan Traces. In IJCAI.
Zhuo, H. H.; Yang, Q.; Hu, D. H.; and Li, L. 2010. Learning
complex action models with quantifiers and logical implica-
tions. Artif. Intell. 174(18): 1540–1569.

	Introduction
	Related work
	Problem
	Learning algorithm
	Termination, correctness and integrity

	Experiments
	Conclusions
	Acknowledgements

