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Abstract

In order that an agent can be an effective collaborator it is
important that the agent is able to adapt its behaviour for the
preferences of a particular user. User preference elicitation
has been considered as a process that happens prior to plan
execution and typically prior to the planning process. How-
ever, when entering an interaction with a new human user
it will not always be possible or desirable for an elicitation
episode to take place. Moreover, the cost of any elicitation
(e.g., annoyance) must be weighed against its benefit in dis-
tinguishing between alternative plans. We therefore pose the
problem of within task preference elicitation, which explic-
itly represents the agent’s knowledge about the user’s pref-
erence model and how the agent’s knowledge can develop
as the interaction progresses. Our approach parameterises a
utility model for a net benefit planning task with a set of (ob-
servable) user attributes. This set of user attributes are repre-
sented as unknown values in a partially observable planning
model and can be accessed through guarded sensing actions
(e.g., through asking a question when it becomes relevant),
allowing the planner to reason with the possible alternative
user utility models. In this work we define the within task
preference elicitation problem and present our framework for
solving these problems. We present results examining its use
in modified benchmark scenarios, including a new planning
domain based on a tour guide scenario.

Introduction
Autonomous and intelligent social robots are becoming
more common and are being used in an increasing num-
ber of roles, including physically assistive robots (Canal,
Alenyà, and Torras 2017) and interactive collaborative
robots (Kragic et al. 2018). In order that an agent can be an
effective collaborator it is important that the agent is able to
adapt its behaviour for the preferences of a particular user.
In certain circumstances it is possible to observe each in-
dividual user over long periods of time in order that their
preferences can be learned, e.g., (Woodworth et al. 2018).
However, in many roles, such as a tour guide, or an office
gopher, the agent may only interact with each individual a
small number of times. In these cases it is still desirable that
the agent can customise its behaviour, but the user’s prefer-
ences must be elicited by the agent as part of the interaction.

The elicitation of user preferences has been considered as
a process that occurs prior to plan execution and typically

prior to the planning process. The selection of elicitation
questions is typically targeted towards optimising the accu-
racy of the resulting preference model, e.g., using a minimax
regret decision criterion (Boutilier et al. 2006). As these ap-
proaches can result in large sets of questions, research has
also been done to look at incorporating user annoyance into
the model of elicitation (Gucsi et al. 2020). Starting from an
existing preference model, various approaches incorporate
the user’s preferences within the selection of an appropri-
ate solution. For example, user preferences can be captured
as utility functions in net benefit planning problems (Smith
2004), soft trajectory constraints (Gerevini and Long 2005;
Baier, Bacchus, and McIlraith 2009), and as partial order-
ings over solutions (Boutilier et al. 2004).

In many situations it will not be appropriate for an iso-
lated elicitation process to proceed the execution of the task.
Moreover, within a human-agent interaction we see pref-
erence elicitation as a natural part of engagement. For in-
stance, consider a tourist on a guided walking tour of a city.
After reaching a place where they can see they are almost
back to the starting point, the tour guide says “Let’s go up
that hill,” pointing to a large hill. “We can get a good view of
the city from there.” However, on seeing the tired expression
on the tourist’s face, the guide adds “Or we can stop at that
cafe over there and take a break.” In this case it would be de-
sirable for the agent to be able to use information elicited at
execution time to influence the remainder of the execution.

In this paper we propose the within task preference elicita-
tion (ITAPE) planning problem, which explicitly represents
the agent’s knowledge about the user’s preference model,
and how the agent’s knowledge can develop as the interac-
tion progresses. Our approach parameterises a utility model
for a net benefit planning task with a set of (observable)
user attributes. This set of user attributes are represented
as unknown values in a partially observable planning model
and can be accessed through guarded sensing actions (e.g.,
through asking a question when it becomes relevant), allow-
ing the planner to reason with the possible alternative user
utility models. In this work we define the ITAPE problem
and present our framework for solving these problem. We
present results examining its use in modified benchmark sce-
narios, including a new tour guide inspired planning domain.

The paper is organised as follows. We begin by present-
ing the planning background, a motivating scenario and the



related work. We define the ITAPE planning problem and
some key properties and then present our representation for
the multi-user preference model. We present our framework
that we use to plan in these domains. Finally, we present an
evaluation of our approach and our conclusions.

Background
In this work we bring together partially observable plan-
ning with net benefit planning. In this section we provide the
background for these problems. A classical planning prob-
lem can be defined as follows.

Definition 1. A Classical Planning Problem is a planning
problem, P = 〈F,A, I,G〉, with fluents, F , actions, A, ini-
tial state, I , and goals, G. A solution (a plan) is a sequence
of actions, π = a0, . . . , an, that transform the initial state,
I , to a state, sn, that satisfies the goals, G ⊆ sn.

An action is defined by a precondition and an effect and
is applicable in a state if its precondition is satisfied by the
state. The set S of states of a planning problem is the set
of states that can be reached by applying any sequence of
applicable actions to the initial state. The aim in classical
planning is typically to find short plans.

Similar to (Menkes Van Den Briel, Do, and Kambham-
pati 2004), we extend the classical planning problem to a
definition of a net benefit planning problem.

Definition 2. A Net Benefit Planning Problem extends a
classical planning problem, P = 〈F,A, I,G〉, with an ac-
tion cost function, C : A 7→ Z and a utility function,
u : S 7→ Z, allocating utility to the final state. A solu-
tion is still a plan, π, leading to some state, sn. The net
benefit of an action sequence is given as: NB(π, sn) =
u(sn)−

∑
a∈π C(a).

In net benefit planning the aim is to find sequences of ac-
tions that optimise overall net benefit.

Partially Observable Planning Problem
A partially observable planning problem, e.g., (Bonet and
Geffner 2011), can be defined as follows.

Definition 3. A Partially Observable Planning Problem, is
defined by a tuple, POP = 〈F,A,M, I,G〉, with fluents
F , actions A, sensor model M , the initial state clauses, I ,
and goal G. The clauses of the initial state provide both the
known positive and negative literals, as well as constraints
over the currently unknown parts of the initial state. A solu-
tion is a branched plan (a tree), where the nodes are actions
or sensing actions. The plan branches on the possible values
of the sensing action. The tree should describe a solution for
any of the possible initial states that are consistent with the
initial state constraints.

Motivating Example: Tour Guide Agent
In this section we introduce an example scenario involving
interaction between an agent and a user that will be used as
an example throughout the paper. A tour guide agent directs
a user through a tour of e.g., a town, stopping at the im-
portant landmarks on the route. An agent may aim to select

a subset of possible sites (landmarks) that the user is most
likely to enjoy (Castillo et al. 2008). Moreover, (as with the
example used in the introduction), ideally a tour guide agent
will use the feedback from the user, gathered during the tour,
in order to influence the remainder of the tour. For example,
if the agent notices that the user is disinterested during a
museum trip it can use that observation in their subsequent
selections.

Related Work
Preferences in planning (Jorge and McIlraith 2008), were in-
troduced to the planning domain definition language in ver-
sion 3.0 (Gerevini and Long 2005) and the use of heuristic
search has proven successful (Baier, Bacchus, and McIlraith
2009). It was observed in (Nguyen et al. 2012) that having an
accurate preference model is not always possible. This has
led to approaches that generate a diverse set of plans that
the user can pick from (Nguyen et al. 2012), planning based
on assumptions of the preference model (Davis-Mendelow,
Baier, and McIlraith 2013) and learning user preferences
based on previous experience (Floyd, Drinkwater, and Aha
2015; Woodworth et al. 2018).

The problem of user preference or utility model elicitation
has been studied, typically focused on optimising the qual-
ity of the model (Boutilier et al. 2006). In (Boutilier 2002)
they develop a partially observable Markov decision process
(POMDP) model, which allows the expected reward of ask-
ing a query to be considered while determining the ques-
tions to ask. However, preference elicitation is still com-
pleted prior to any task decisions are made. In the SAMAP
system (Castillo et al. 2008), similar to our approach, user
attributes (e.g., preference of sports as a leisure activity) are
used as indirect elicitation of user preferences. However, in
SAMAP the user model is selected before planning. Within
social robotics, (Gucsi et al. 2020) use an annoyance cost
model, which assigns a level of annoyance to each of the
query actions. The intention then is to identify an optimal
sequence of questions given the annoyance budget.

There are also approaches that combine elicitation and
planning/execution within a single framework, such as the
factory setting, user tailoring, execution tuning (FUTE)
framework (Canal, Alenyà, and Torras 2016). These frame-
works are typically iterative, specialising plan genera-
tion through either interleaving elicitation and planning
episodes (Sanneman 2019), or learning from observations
over time (Canal, Alenyà, and Torras 2016). The approach
presented in (Das et al. 2018) supports actively eliciting
preferences over task decompositions from a human expert
during the planning process. In (Gilroy et al. 2012; Behnke
et al. 2020) the systems can be adapted during execution
(e.g., adding temporal constraints), although the planners do
not reason about the possible user preferences or whether
to elicit them. Using sensing or non-deterministic actions
have been used to elicit user response to agent queries in di-
alogue systems (Petrick and Foster 2013; Botea et al. 2019).
The robot bartender, presented in (Petrick and Foster 2013,
2016), used sensing actions to determine users’ orders dur-
ing a task-based social interaction. In (Chatterjee et al. 2020)
they organise user data around various dimensions (e.g., age



Figure 1: During the task the robot is able to elicit whether
the user likes outdoors or not. This is then used in subse-
quent decisions of what activities should be planned.

and sex) and show that a Multiple-Environment Markov De-
cision Process can be used to capture the alternative user
probability functions (e.g., what the user is likely to do given
a certain recommendation). It is aimed at improving individ-
ual recommendation episodes, rather than reasoning about
preference elicitation and sequential optimisation within the
same framework.

A Within Task Elicitation Planning Problem
In this work we consider the problem of within task elic-
itation. Intuitively we aim to move elicitation from a pro-
cess that happens before planning begins, to a process that
happens during execution. As a consequence, at planning
time there is uncertainty about the preferences of the users.
Therefore offline planning is performed under uncertainty,
and identifies the elicitation that should be performed during
execution. Our approach parameterises a utility model for a
net benefit planning task with a set of user attributes. This
set of user attributes are represented as unknown values in
a partially observable planning model and can be accessed
through guarded sensing actions. The planner is provided
with these sensing actions that can be used to elicit the infor-
mation from the user. In this section we define our problem
as a net benefit partially observable planning problem.

Within Task Elicitation
We follow (Castillo et al. 2008) in assuming that the prefer-
ences of a particular user can be determined based on a set
of observations. For example, a tour guide might ask a ques-
tion like ‘Do you like the outdoors?’ and if they answer posi-
tively, they might assume that the user will prefer landmarks
such as parks, gardens and zoos. In the within task elicitation
setting the values of these user attributes for a user during a
specific interaction are either not known, or only partially
known in advance. This means that the planner must reason
about the set of possible valuations of user attributes and
their associated utility functions. As the task unfolds and the
agent has the opportunity to discover the attribute values for
the particular user then the uncertainty about the user’s util-
ity function reduces, allowing the subsequent part of the plan
to be better tailored for the user.

User Attributes In this work we assume that the pref-
erences of any given user can be determined based on
a set of observations, which might be made during a

task. To this end we define a set of user attributes,
XU = XU

0 , . . . , X
U
p , with domain of XU

i denoted D(XU
i ).

For example, a tour guide scenario might include the
user attributes: {likes-outdoorsU ,likes-educationalU ,likes-
socialU}, each with Boolean domains (e.g., likes-outdoorsU
is true if the user likes being outdoors).

Elicitation Actions Each user attribute is associated with
one or more sensing actions, which are called elicitation ac-
tions. These actions discover the value of the user attributes
during execution. A user’s preferences and choices can be
elicited through questions (Petrick and Foster 2016), but
might also be inferred through implicit signals, e.g., (Gilroy
et al. 2012; Izquierdo-Reyes et al. 2018). For example, we
noted that a tour guide agent might ask the user whether they
like outdoor activities and that a positive answer might lead
the agent to promote outdoor landmarks. Similarly, during
a trip to a museum it might become apparent that the user
is not engaged and the agent may choose fewer educational
sites in subsequent parts of the tour. In this work we do not
distinguish between sensing of user’s preferences through
observations and dialogue. However, it is worth noting that
elicitation actions should be associated with carefully mod-
elled constraints so that elicitations are only used when it is
appropriate, e.g., observing a user’s response to some activ-
ity will only be available at relevant points during the task.

Possible Users We assume that the set of possible users
are described by the enumeration of the possible value as-
signments to the user attributes. This set of assignments is
denoted XU . We assume that each type of user, associated
with some attribute values x ∈ XU , are as important or pre-
ferred as any other.

The Problem Specification
We set the problem as a partially observable planning prob-
lem, e.g., (Bonet and Geffner 2011), using the hidden part
of the state to represent a set of user attributes (XU ). Our
problem is then set as a net benefit optimisation task, where
the utility function can depend on the user’s attributes and
the elicitation actions can incur cost. This allows the planner
to trade-off the cost of elicitation with the utility benefits of
knowing the user’s preferences.

Definition 4. A Within Task Elicitation Planning Prob-
lem is a Partially Observable Net Benefit Planning Prob-
lem, defined from a partially observable planning problem,
POP = 〈F,A,M, I,G〉 and extended with an action cost
function, C : A 7→ Z and a utility function, u : S 7→ Z, al-
locating utility to the final state. A solution, π, is a branched
plan of actions and elicitation actions. In evaluating the util-
ity of a solution plan we sum the utility of execution (utility
minus cost) for each of the possible user types:

utility(π) =
∑

x∈XU

[u(apply(π,x, I))−
∑

a∈lin(π,x)

C(a)

−
∑

e∈sens(π,x)

C(e)]



Where XU is the set of valuations of the user attributes,XU ;
apply(π,x, I) applies the plan by following the branches
consistent with x (returns the resulting state); lin(π,x) is
the action sequence (linearisation) extracted from π found
by following branches consistent with x; and sens(π,x) is
the same for sensing actions.

We can represent a tour guide scenario as a within task
elicitation planning problem, by allowing the utility of the
potential activities (e.g., climbing a hill) to vary depending
on user attributes (e.g., whether they like outdoors). An ex-
ample solution for a simple tour guide scenario is illustrated
in Figure 1.

Partially Observable User Utility Model
The final states of a plan for a within task elicitation prob-
lem may be partial states, with partial information regarding
the attributes of the user. This could be dealt with by either
allowing the utility model to attribute utility to partial states,
or to aggregate the utility of each of the potential concrete
states described by the final partial state. In setting the gen-
eral ITAPE problem we add structure into the model to en-
sure that the user attributes are all known in the final state.
This has the following benefits:

• the model accurately reflects the utility valuation of each
of the possible users (not aggregated);

• the utility model must be specified for the tuples of value
assignments to the user attributes (and not unknowns);

• any goal can be achieved when its actual utility is not
known;

• this added structure is a modelling artefact and therefore
the required additional elicitation actions will not be exe-
cuted (described below).

To this end the planning task is split into three distinct sec-
tions, which are illustrated in Figure 2. The first section cap-
tures the strategy adopted while performing the task (Fig-
ure 2 i.). In this case the planner selects elicitation questions
that make important distinctions between user groups. In this
section the elicitation of the user’s attributes are associated
with cost. At the end of the first section the task is completed
and no further task actions can be applied.

The second part of the planning task completes the elic-
itation task (Figure 2 ii.), discovering the valuation of all
user attributes not already discovered. In this case there is
zero cost allocated with these elicitations. In the final step
(Figure 2 iii.) each of the achieved goals is evaluated using
the utility model, as the values of all user attributes are now
known.1 This final step is similar to an approach used in net
benefit planning, which is used to compile utility scores into
a cost function (Keyder and Geffner 2009). Notice during
execution the second and third sections of the action traces
are omitted: their role is to force the planner to consider the
alternative costings of the plan.

This requires some machinery in terms of the planning
model. Fluents are defined for each goal, which mark the
progress of each goal through: unachieved, achieved and

1The figure assumes an additive factoring of the utility function.

costed. A pair of actions, applicable in phase iii., is de-
fined for each of the goals: the first replaces unachieved with
costed, for no reward; the second replaces achieved with
costed and has conditional effects for utility depending on
the appropriate utility model.

A planner that reasons about the possible alternative util-
ity functions, will be able to weigh up whether eliciting in-
formation and therefore allowing more tailored selection of
goals, is worth the cost of the elicitation. Notice, if the plan-
ner does not elicit information during the task, then it will
be selecting goals without certainty of the utility associated
with the goal (with respect to the current user).

Properties of Within Task Preference Elicitation
Planning Problems
Proposition 1. The Uncertainty of a Within Task Preference
Elicitation Planning Problem is monotonically decreasing.

This follows from the type of partially observable plan-
ning problem that we use: the set of partially observable
variables are defined up front and once valuated can not be-
come unknown.
Proposition 2. Any linearisation, lin(π,x) for some x ∈
XU , of a solution, π, is a solution for any other x′ ∈ XU .

This holds because the user attributes are used to deter-
mine the appropriate user utility model and do not impact
the causal structure or the cost model. This observation can
be exploited in order that a plan, π, can be revised after con-
struction and elicitation actions removed. Thus the balance
between elicitation and utility can be further explored (in a
similar manner to decision tree pruning) e.g., plan explana-
tions could be included in the costing.

Representing Multi-User Preferences
An important aspect of the within task elicitation planning
problem is the definition of a utility model that captures the
preferences of a set of potential users. As with (Castillo et al.
2008) we assume that the preferences of any of these poten-
tial users can be determined based on a set of observations
(e.g. questions or observations). Our approach builds on
Generalised Additive Independence (GAI) models, which
provide a general representation for capturing user prefer-
ences (Fishburn 1967; Braziunas and Boutilier 2006). GAIs
combine additive functions for a set of attributes, which
makes them appropriate models for defining utility functions
for net benefit problems. A key advantage is that GAIs iso-
late the dependencies of these functions, allowing a utility
model to be captured concisely. In this section we first de-
fine standard GAI models and then extend them so that the
user attributes can be involved in determining plan utility.

GAI models
We follow the definition of GAI models presented in (Braz-
iunas and Boutilier 2006). A GAI is defined as a set of at-
tributes, X = X0, . . . , Xn, with finite domains: the domain
of Xi is denoted D(Xi). Typically the set, X, of possible
outcomes (the solutions to be selected amongst) instanti-
ate these attributes. For the purposes of this work, we asso-
ciate an attribute with each goal of our net benefit problem.



Figure 2: The three stages forced in the planning model. Stage i. involves performing the task and can include elicitation. Steps
ii. and iii. are then model artefact to force the planner to reason about the user’s true preferences.

Each attribute is a Boolean: the goal is either achieved or
missed. E.g., in a tour guide scenario, the agent attributes
might be: X={pub,museum,park,art gallery} (e.g., alterna-
tive landmarks that could be visited on the tour). Notice that
the value of these attributes follow from a plan (i.e., the goals
achieved in the final state) and are therefore selected by the
planning agent.

The utility function is then defined by summing terms for
each of the attributes (e.g., there are individual utility con-
tributions associated with each attribute). The utility is de-
termined for each attribute by a subset of the attributes that
entirely determine its contribution to the overall utility of
an outcome. In particular, each attribute is associated with a
collection, I1, ..., Im, of possibly intersecting attribute index
sets (or factors). For example, in the tour guide example,X0

might only rely on {0}, i.e., the utility of the pub only de-
pends on whether the tour visited the pub; whereas X1 may
depend on {1, 3}, i.e., the utility of the museum is dependent
on whether the tour also includes the art gallery, as these
might be considered similar. The utility function is then de-
fined using sub-utility functions, e.g., ui(xIi), is the utility
function for attribute i, which depends on the attributes in
index set Ii, as follows:

u(x) =

i≤m∑
i=1

ui(xIi)

GAI models can be used to capture a wide range of pref-
erences, including preferences over the possible trajectories
(e.g., describe as trajectory constraints and associate with a
Boolean attribute). The main limitation is that the set of at-
tributes must be identified up front.

User Observations as Attributes Our intention is to cap-
ture the preferences of all potential users in a single GAI
model. In this work we assume that the preferences of any
given user can be determined based on a set of observa-
tions, which might be made during a task (see ‘Elicitation
Actions’ above). To this end we extend the GAI with the
user attributes described above (see ‘User Attributes’), al-
lowing the utility of each goal to be dependent on these user
attributes. These are incorporated into a GAI model as addi-
tional attributes, which allows the utility of goals to depend
on them. Therefore the GAI attributes have two parts: they
contain an attribute for each goal in the net benefit prob-
lem (chosen by the agent as described above) and a set of
user attributes (i.e., that cannot be selected by the agent).

We distinguish agent attributes with a superscriptA and user
attributes with a superscript U , e.g., the attributes can be
written XA

1 , . . . , X
A
m, X

U
m+1, . . . , X

U
m+p+1. For example, a

tour guide scenario might include the user attributes: {likes-
outdoorsU ,likes-educationalU ,likes-socialU} (e.g., likes-
outdoorsU is true if the user likes being outdoors), and
agent attributes: {pubA,museumA,parkA,. . . } (as before).
As an example, the utility model for the pub goal might de-
pend on the value of likes-socialU :

u(pubA) =


40 pubA = true

∧
likes-socialU = true

20 pubA = true
∧

likes-socialU = false

0 otherwise

As a convenience, we denote the specific utility contribu-
tion, ux(g), for a specific set of attributes, x, and agent at-
tribute, g. A GAI is used to capture the ITAPE utility model,
such that the utility of any final state can be calculated by
summing the corresponding contribution for each goal. We
assume for this presentation that the utility of not achieving a
goal is always zero, although there is no theoretical require-
ment. To summarise, the approach relies on the following
assumptions:
• user preferences can be represented using the net benefit

utility model (Jorge and McIlraith 2008);
• a set of user attributes are sufficient to distinguish between

users with differing preferences (Castillo et al. 2008);
• an appropriate GAI model can be defined: either by do-

main experts, or extracted from user observations.

An Optimistic Approach for Solving Within
Task Preference Elicitation Problems

We have developed a framework that takes as input: a net
benefit planning model, a set of user attributes with asso-
ciated constraints and a GAI, which describes the possible
user utility models. The output is an ITAPE Problem, which
is solved using an extended partially observable planner.
Our approach is built on K-Replanner (Bonet and Geffner
2011), which is a partially observable planning system that
uses a compilation to classical planning approach. Our ini-
tial investigations with full exploration of the problem in an
AND-OR tree indicated that a full exploration approach is
currently only feasible for small problems. Moreover the
compilation approach is particularly suited to extending to
the cost sensitive setting, which is not typically supported in



partially observable planners. However, whereas, the formu-
lation of the ITAPE problem is appropriate for solving ap-
proaches that reason directly with the uncertainty, optimistic
approaches (such as K-Replanner) are likely to result in no
user elicitation. In this section we demonstrate this issue and
the approach that we use in order to allow the optimistic ap-
proach to solve these problems.

Limitations of an Optimistic Approach
In practice, a popular approach to partially observable prob-
lems has been to compile the problem into a classical plan-
ning problem. A key aspect of this encoding is that each
sensing action is replaced by a pair of standard actions: one
captures the effect of the sensor in the case that its proposi-
tion holds in the world and the other for the negative case.
As a result the valuation of the sensors becomes a choice for
the planner to make. Thus the classical planner will build
an optimistic plan, which is based on the assumption that it
can pick the values of sensor actions. In the case of ITAPE
problems it means that in the compiled model, part ii. (see
Figure 2) will allow any user model to be selected as part
of a plan. The returned plans therefore use the context of an
optimistic selection of the user attributes and do not need to
elicit any information during the task. In part ii., where elici-
tation has zero cost, the planner selects the appropriate sens-
ing options. For example, if the agent must select between
a hill walk and a pub on a (one stop) tour, it can first visit
the site (e.g., the pub) and end the task and then it can select
the appropriate user attribute values (likes-socialU = true)
that will lead to its selection attaining the best score.

Reformulation For an Optimistic Planner
We therefore propose an alternative statement of the prob-
lem tailored for this optimistic approach. Instead of the ap-
proach illustrated in Figure 2 utility is accumulated during
the task stage. This is achieved by creating additional ac-
tions for each goal satisfying action. This additional one is
connected with the utility (see next part) and commits to the
goal remaining achieved (i.e., every goal destroying action is
subsequently prevented). Notice that although the prevent-
ing goals to be unachieved could cause a typical partially
observable planning problem to become unsolvable (i.e., for
certain hidden states), in the case of ITAPE problems, be-
cause the classical planner finds a plan for a user attribute
valuation and Proposition 2 states that this is suitable for any
other user then the planner will still find a solution (perhaps
not as good as it might have been).

Goal Utility for Partial Attribute Valuations
Notice that this has implications on the cost model. Whereas
the machinery presented above guarantees that the complete
attribute valuation was known, we now must contend with
the possibility that at any given state the agent’s knowledge
of the user’s attributes will be only partially known. And
of course any goal might need a utility score attributed in
any of these possible states. We have therefore considered
approaches to calculate the utility of achieving a goal in a
partial state, as an aggregation of the utility attributable to
each of the possible concrete states.

The GAI model compartmentalises the utility function
(e.g., the utility score for a museum only depends on likes-
educationalU ). As such the utility of each goal is determined
by a mapping of partial attribute valuations to utility scores.
We consider two aggregation approaches in this work:

1. Fully enumerate each partial attribute valuation and map
them to a utility score. Each partial valuation maps to the
mean of all relevant concrete state valuations.

2. For each attribute only extend the utility model with a sin-
gle entry for when that attribute is unknown (irrespective
of any other attributes). Attribute the minimum utility for
that goal.

Because the first approach allocates utility individually to
each of the partial states its value is sensitive to partial
knowledge about the user attribute values. Its value will be
higher than (or equal to) the lowest value, which promotes
unknown (potentially better utility) goals over the lowest
utility goals in tie-break situations. The second approach
only requires a number of additional entries in the utility
mapping linear in the number of relevant attributes. How-
ever, it is therefore much less sensitive to partial user infor-
mation. Notice in both cases the utility score is lower than
(or equal to) the maximum utility value for the goal (given
the known user attributes), which incentivises the planner to
elicit user attributes prior to achieving goals (this only holds
because we use the minimum in the second approach).

Encoding as a Minimisation Optimisation Problem
Our current framework uses Lama as the planner that un-
derpins the K-Replanning system, allowing us to exploit its
powerful heuristics and optimisation. We therefore translate
the net benefit optimisation problem to an equivalent min-
imisation problem (Keyder and Geffner 2009). The transla-
tion requires the following steps:

• For each goal, g, identify the maximum utility for that
goal: uMAX

g = maxx∈X ux(g)

• For each goal, g, add uMAX
g to the cost of the miss ac-

tion, missg (each goal is either committed to or explicitly
missed using the corresponding missg action).

• For each goal, g, replace the utility attributed to a goal,
ux(g), with the cost: Cx(g) = uMAX

g − ux(g).
Intuitively, when a goal is missed, instead of missing util-
ity, high cost is incurred instead. Similarly, when achieving
the goal, if the goal is associated with high utility (i.e., to a
specific user) then it will incur low cost.

Evaluation
In this section we first present the setup of our evaluation
and then present the results. We have implemented the pre-
sented framework and have performed a proof of concept
evaluation to investigate its performance on ITAPE prob-
lems. The baseline approach, used for comparison in the
evaluation, assumes no information can be elicited and so
all goal utility scores are averaged over the possible utility
scores for the goal. We have used synthetic data sets, which



Figure 3: An example of a map for the Tour Guide domain
with 15 nodes, including optional sights (triangles), com-
pulsory sights (boxes) and the start/end of the tour (star).
Unlabelled dots are locations with no landmarks.

have varied utilities for each preferred and non-preferred al-
ternatives. We assume that users associated with a specific
set of attributes will agree with the utility score represented
in the GAI for those attributes. In particular, we have ab-
stracted from the noise of real scenarios in order to test the
feasibility of our system in responding appropriately to user
preferences uncovered during execution.

The approaches we compare in the evaluation are:
K-R-E Our approach was built on K-Replanner (Bonet and

Geffner 2011). K-Replanner has been extended to gener-
ate the complete contingency tree and for the cost sensi-
tive planning setting. The system also includes the remod-
elling steps and precompilation of the GAI utility model
described above;

Baseline The baseline uses LAMA-11 and has no access to
within task elicitation. The baseline used averaged cost
models (i.e., no assumption made about likelihood of
preferences).

The baseline planner and the classical planner used with K-
Replanner was the LAMA-11 configuration of Fast Down-
wards (Richter and Westphal 2010) with 6Gb RAM and a
10 minute time-out. The problems presented to the systems
only differ in the following: the K-R-E model is extended
with the variables associated with the user’s attributes and
the cost model is predicated on those variables.

For the purposes of this study we have created a set of
benchmark problems (either created or adapted from exist-
ing domains). We test two versions: unconstrained, where
sensing actions (elicitations) have no conditions and can be
done at any state; and constrained where the modelled con-
dition constrains elicitation:
tour-guide: A new domain involving navigating a map and

visiting different landmarks. Problem generation starts
from a planar graph, following the approach in (Gre-
gory and Lindsay 2007) that aims to make more realis-
tic map networks, see Figure 3. Landmarks are organised
into general categories (in this case, educational, social or
outdoors) and the follower has preferences over the cat-
egories (e.g., likes outdoors). Constraint: When they are
located at a landmark of a certain type the agent can query
whether the user likes that type of landmarks.
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Figure 4: Results in the tour domain aggregated for each type
of user. The codes indicate 0: dislikes and 1: likes, for each
attribute. E.g., P0111 means that the user likes social, edu-
catory and outdoor activities.

instruction giving: the briefcase domain was extended
with alternative methods of providing instructions to the
follower. The packages are divided into heavy and light
and the follower has preferences for the alternative styles
of instructions for collecting/depositing each of the types
of package. Constraint: the follower’s response to a type
of instruction can be sensed.

rovers: simulates an interested operator, who has prefer-
ences for types of goals, observing plan execution of a
rover. The agent can ask the operator’s interests (i.e., rock,
soil or image goal types). Constraint: Questions are appli-
cable at relevant states (e.g., ask about preference for rock
goals at locations with rocks).

bar-tender: the bartender chooses either to make and serve
a cocktail (goal) or miss it out. The customer’s utility is
based on their preferences for the constituent ingredients
(e.g., likes ingredient1, but does not like ingredient2). No
constrained version.

Improving Plan Utility
Table 1 presents the results of our experiment. The accu-
mulated cost is presented for the Baseline and K-R-E ap-
proaches, alongside the percentage reduction. In the con-
strained sensing setting (upper part of the table) the results
show that the K-R-E approach leads to an overall reduction
in cost compared with Baseline in the three domains. As ex-
pected, the results for the unconstrained models outperform
the constrained models. The results demonstrate that over
constraining elicitation actions can lead to weaker perfor-
mance. This suggests that allowing weakly constrained al-
ternatives (e.g., with higher cost), where appropriate, might
allow the planner to determine the most appropriate use
of elicitation. For example, if discovering whether the user
likes educational activities heavily dictates the best course
of action from the beginning then the agent might choose an
elicitation option to discover this preference upfront. This
action would be associated with a cost to reflect its impact



Domain Solved Avg. Nodes Avg. Goals User Atts Accumulated Cost Cost Reduction(%)Baseline K-R-E

C
on

st
ra

in
ed tour-guide(20) 20 171.6 13.5 3 9472 8775 7.36%

instuct(10) 10 75.3 11.6 2 2438 2244 7.96%
rovers(20) 20 96.8 8.95 3 6896 6435 6.69%

U
nc

on
st

ra
in

ed tour-guide(20) 20 173.85 13.5 3 9472 8663 8.54%
instuct(10) 10 71.9 11.6 2 2438 2196 9.93%
rovers(20) 20 106.2 8.95 3 6896 6249 9.38%

bar-tender(10) 10 122.1 2.2 3 6126 5724 6.56%

Table 1: The table reports the accumulated cost for Baseline and K-R-E along with the percentage reduction, for four domains
(number of instances in brackets) in controlled (top) and uncontrolled (bottom) sensing modes. The costs are accumulated for
all user types and problems. The averaged number of nodes in the generated trees are also presented.
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Figure 5: Mean cost by problem in the instruction giving
domain. The plot demonstrates the improvement window of
the approach.

on the interaction. We can further analyse the results to de-
termine how user types are effected. In the bar-tender and
tour-guide domains, K-R-E improves the cost most for users
with fewer positive attributes (e.g., likes fewer ingredients).
Figure 4 plots the average costs for specific user attribute
valuations in the tour-guide domain. E.g., P0101 gathers the
users that like social and outdoor activities, but do not like
educational sites. Points above the line indicate improve-
ment for the K-R-E approach. These results suggest that the
baseline plans involve committing to goals (e.g., serving the
majority of the drinks), which have higher cost for users that
have fewer positive attributes, providing more room for im-
provement for these user types. The improvement is evenly
distributed across the user types in the rovers domain.

Problem Size
Further analysis of the results also demonstrate that the prob-
lem size and structure play important roles in the perfor-
mance. In particular, for each domain there will be a level
of difficulty where the K-R-E approach will be most effec-
tive. Figure 5 illustrates this window in the instruction giving
domain. If the problem is too small there is no opportunity
to elicit information, allowing no customisation. If too large
then the underlying classical planning approach can fail to
commit to any goals, leading to weaker performance.

The problem with larger problems is inherited from limi-
tations of using the conversion of a net-benefit to a minimi-
sation problem. In solving these problems it is typical for the
planner to first find a plan that misses all of the goals, as this
will be the shortest plan. In order to find improved cost so-

lutions requires an exploration of longer plans. In tour-guide
additional goals can often be added to a plan with only some
small number of additional steps, allowing improved cost
bounds to be discovered incrementally. This has led to the
approach being effective in relatively large problems (an av-
erage of 13.5 goals). In contrast in bar-tender each of the
goals is fairly independent and takes a long sequence of ac-
tions to achieve. As the number of goals is increased, the
space of alternative solutions of each length grows and find-
ing better plans becomes infeasible with the resources. As
a result the approach is only suitable for problems with far
fewer goals (an average of 2.2 goals). Notice that for prob-
lem 10 in Figure 5 both approaches fail to commit to any
goals, leading to the generated plans having the same cost.
However, as the K-R-E approach adds some complexity to
the model, there may be cases where the baseline approach is
able to find interesting solutions where the K-R-E approach
cannot find them (within the given resources).

Conclusion and Future Work
We are interested in allowing an agent to adapt its behaviour
to a particular human interaction partner during an interac-
tion. To this end we have posed the within task elicitation
problem, which allows the agent to reason over multiple
potential user preference models. User attributes are repre-
sented as initially unknown variables in the planning model
and associated with elicitation actions, which can be used to
distinguish between user preferences. We presented a frame-
work that supports our optimistic approach to solving these
problems. In our evaluation we observed that the framework
could discover better plans than the baseline in each of the
tested domains. This provides a new approach for specialis-
ing plan-based agent behaviour in situations where upfront
elicitation is not feasible. We are currently running a user
study examining human response within human agent inter-
actions (Lindsay et al. 2020b,a) and are collecting user pref-
erence information as part of this study. We aim to explore
the use of this data in constructing ITAPE problems.
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