
The Power of Waiting in Social Laws

Alexander Tuisov, Alexander Shleyfman, Erez Karpas
Technion, Israel

alexandt@campus.technion.ac.il, alesh@technion.ac.il, karpase@technion.ac.il

Abstract

Agents operating in the same environment as other agents
could interfere with each other. One approach for coordina-
tion in such multi-agent systems is instituting a social law,
which restricts possible behaviors of the agents. A social law
which ensures that each agent is able to achieve its goal, re-
gardless of what the other agents do, is called robust. Recent
work has shown how to verify that a given social law, en-
coded in a MA-STRIPS formalism is robust, by compilation
to classical planning. That work also introduced the notion of
waitfor preconditions, which tell the agent to check if these
preconditions hold before executing its next action. In this pa-
per, we show that the waitfor mechanism strictly adds power
to social laws. Specifically, we first show that, without any
waitfor preconditions, a social law is robust iff there is no
possible harmful interaction between the agents, and thus the
MA-STRIPS problem can be decomposed into independent
individual problems for each agent. Second, we show there
exist multi-agent problems which are not decomposable, and
therefore have no robust social law without waitfor precondi-
tions, which do have a robust social law using waitfor. Finally,
we prove that marking preconditions as waitfor preconditions
never hurts the robustness of a multi-agent problem.

Introduction
Agents operating in a shared environment can interfere with
each other. To ensure agents can plan without reasoning
about others agents, and still be able reach their goals, a so-
cial law (Tenneholtz and Moses 1989) which restricts the
allowed behaviors of the agents can be instituted. A social
law is robust if it ensures each agent will achieve its goal.

Recently, social laws were studied in the context of multi-
agent planning (Karpas, Shleyfman, and Tennenholtz 2017).
In this setting, verifying if a given social law is robust was
reduced to solving a centralized planning problem which
attempts to find a counterexample. If the resulting plan-
ning problem is unsolvable, then the social law is robust.
That paper introduced the notion of waitfor preconditions,
which control the execution of agents’ individual plans in
the shared environment – that is, an agent will wait until the
waitfor preconditions of its next action are fulfilled before
trying to execute it in the environment. This simple mech-
anism allows for some synchronization between the agents
via conditional execution, while still allowing each agent to
solve a classical (non-conditional) planning task.

In this work we explore the power of the waitfor mech-
anism more closely. Our main motivation stems from the
fact that for the physical agents some predicates are sensible
and some are not. The agent cannot wait for the precondi-
tion it cannot sense, thus the two types of predicates should
be treated differently. Thus, we introduce some basic obser-
vations on the nature of sensible propositions – the waitfor
atoms.

First, we show that without waitfors, robustness verifica-
tion is essentially reduced to checking if some notion of de-
composability exists in the multi-agent planning task. Sec-
ond, we show that there are multi-agent planning problems
which only have a robust social law with waitfor precon-
ditions, showing they are strictly more powerful than not
using waitfors. Finally, we prove that adding waitfors pre-
serves robustness, thus showing that agents should wait for
any precondition they can.

Background
In this section we review some necessary background.

Multi-agent Problem Formalism
Here we primarily deal with problems represented in a mod-
ified version of the MA-STRIPS formalism (Brafman and
Domshlak 2008), in which each agent has its own goal
(Karpas, Shleyfman, and Tennenholtz 2017). Such a prob-
lem is given by Π = 〈F , {Ai}ni=1, I, {Gi}ni=1〉, where F is
the set of propositions in the problem Π, {Ai}ni=1 are the sets
of actions available to agents numbered [n] := {1, . . . , n}
respectively. Each action is a triplet 〈pre, add, del〉, where
all three components are subset of propositions. Given some
action a, we sometimes refer to (add(a), del(a)) as eff(a)
for brevity. The initial state I ⊆ F is a subset of proposi-
tions, where propositions in it are assumed to be true, and
the rest F \ I are false. Finally, each agent i ∈ [n] has its
own goal Gi ⊆ F .

The centralized planning problem is a STRIPS plan-
ning problem (Fikes and Nilsson 1971) denoted by Πc =
〈F ,Ac, I, Gc〉 where Ac =

⋃n
i=1Ai and Gc =

⋃n
i=1Gi.

The projection over the set of atoms X ⊆ F is also a
STRIPS planning problem: ΠX = 〈FX ,AX , IX , GX〉,
where for every atom subset E ∈ {F , I, G} we apply the
operator EX = E ∩ X , e.g., the set of atoms of ΠX is



X = X ∩ F , and the set of actions is defined as

AX = {〈pre(a), del(a) ∩X, add(a) ∩X〉 | pre(a) ⊆ X}.

The natural individual projection for agent i is denoted by
Πi = 〈F ,Ai, I, Gi〉.

Let Π = 〈F ,A, I, G〉 be a STRIPS planning task. We de-
fine a state to be s ⊆ F . An action a ∈ A can be applicable
in a state s if pre(a) ⊆ s, and the result of this application
is sJaK := (s \ del(a)) ∪ add(a). The result of sequentially
applying (if possible) the sequence of actions π to the state
s is denoted by sJπK. The sequence of actions π = a1..am
is called a plan if G ⊆ IJπK. The k-prefix of the plan π is
the sequence of actions a1..ak, and denoted by π|k, where
k ∈ [m]. The zero prefix applying empty sequence of ac-
tions is annotated as IJπ|0K = I . The set of all plans of a
task Π is denoted by π(Π). A plan πi for a projection Πi

is called an individual plan of an agent i. The plan for Πc

is called a joint plan. To ease the notation below we define
the following sets for each agent i, let ψ : A → 2F be one
of the following functions ψ ∈ {pre, add, del}. We define
ψ(Ai) =

⋃
a∈Ai

ψ(a).

Execution Model
In their work, Karpas et al. (2017) introduced the concept of
waitfor, which constitutes a basic form of synchronization
that can eliminate some failures. Informally, waitfor is a set
of action preconditions that postpones the action execution
until all of them are fulfilled at the same time.

Formally, let {πi}ni=1 be a set of individual agent plans
that solve the projection Πi for each agent i ∈ [n]. The set
of all interleaving executions is denoted by π[n](Π). We say
that a planning task is robust to rational if ∅ 6= π[n](Π) ⊆
π(Πc). On one hand this means that the success of the exe-
cution does not depend on the order in which the individual
plans are combined, and on the other hand ensures that at
least one solution exists. If an action a is to be executed in
some state s, but is inapplicable in s, i.e., pre(a) 6⊆ s, we
declare such a situation failure and terminate the execution.

Waitfor is a marking of a precondition of an action with
the following semantics: during execution, if there is a un-
fulfilled waitfor precondition to the action that an agent is
about to execute, the agent waits instead. Thus, for each ac-
tion a ∈ Ac the set pre(a) is divided into pref (a) – regular
preconditions, and prew(a) – thewaitfor preconditions that
signal the scheduler to postpone the action. Alternatively,
prew(a) can be described as a creating a conditional effects
in the following matter: applying action a = 〈prew, pre, eff〉
in a state s is equivalent to saying eff(a) = eff if prew ⊆ s,
and eff(a) = ∅ otherwise.

Let πrw = a1..am be an interleaving execution of the plans
{πi}ni=1. We say that πrw respects waitfor preconditions if
at the execution failure at some k ∈ [m] it still holds that
prew(ak) ⊆ IJπrw|k−1K. We denote the set of all executions
that respect waitfors of some problem Π as π[n]

rw (Π). It is
important to note that the actual “decision to wait” is taken
only during execution, and not during planning, since in the
individual projection the agent is not aware of what the state

of the world will be at any given point in the plan’s execu-
tion. In this work we dive deeper into the implications of
introducing a waitfor precondition into the system.

Social laws
Previous work (Karpas, Shleyfman, and Tennenholtz 2017;
Tuisov and Karpas 2020) defined a social law in the context
of MA-STRIPS problems in various ways. Here we adopt
the most general definition:

Definition 1 (Social Law). A social law l is a transformation
of an MA-STRIPS task Π = 〈F , {Ai}ni=1, I, {Gi}ni=1〉 to a
modified task Πl = 〈F l, {Al

i}ni=1, I
l, {Gl

i}ni=1〉 such that:
• F l is a set of propositions. F ⊆ F l

• {Al
i}ni=1 is a set of actions for each agent i. ∀al ∈ Al

i
∃!a ∈ Ai :

– pref (a) ⊆ (pref (al) ∪ prew(al))

– prew(a) ⊆ prew(al)
– add(a) ⊆ add(al)
– del(a) ⊆ del(al)
– (add(al) \ add(a)), (del(al) \ del(a)) ⊆ F l \ F

• I ⊆ I l ⊆ F l

• {Gl
i}ni=1 ⊆ F l. ∀i : Gi ⊆ Gl

i

In plain words, a social law can remove existing actions
or add to their preconditions. It may also add propositions to
the problem, and effects to the actions, but the added effects
can only affect added propositions. This corresponds to the
idea that the environment designer cannot add new capabil-
ities to the agents (a city designer cannot make cars fly), but
can add auxiliary variables. Lastly, it can add to the goals of
agents, for example to motivate releasing the lock on some
resource after using it.

Robustness of a Social Law
A crucial property to look for in a social law is its robust-
ness, which is the guarantee that agents operating under the
social law are guaranteed to achieve their goals with no con-
flicts. We rephrase the definition that appeared in Karpas et
al. (2017) according to the notation introduced earlier:

Definition 2 (Rational Robustness). A social law l for multi-
agent setting Π = 〈F , {Ai}ni=1, I, {Gi}ni=1〉 is rationally
robust with respect to waitfors iff: ∅ 6= π[n]

rw (Πl) ⊆ π[n](Πc).

In a rationally robust task agents can execute their plans
in an arbitrary order, and still be guaranteed to arrive at their
goals at the end of the execution.

Moreover, waitfor preconditions are only accounted for
during the execution, not during planning done by agents.
Thus, the set of all possible individual plans (and their inter-
leavings) remains the same with no regard to the presence of
waitfors. Formally:

Theorem 1. A rationally robust MA-STRIPS task Π is also
rationally robust with respect to waitfors, i.e.:

∅ 6= π[n](Π) ⊆ π(Πc) =⇒ ∅ 6= π[n](Π) = π[n]
rw (Π).

Proof. The direction π[n]
rw (Π) ⊆ π[n](Π) is true by defini-

tion. Let π ∈ π[n](Π) ⊆ π(Πc), then π is a valid plan for



Πc. Let ak be the k’s action in the plan π, then it holds
that pre(ak) ⊆ IJπ|k−1K, which, implies that prew(ak) ⊆
IJπ|k−1K. Thus, π ∈ π[n]

rw (Π).

Robustness and Single-agent Decomposition
To understand the true meaning and applicability of wait-
fors, we first need to discuss what happens if we do not allow
them. For the rest of this section assume no waitfor precon-
ditions exist. In what follows we develop a useful criterion
that implies a problem’s robustness and does not require to
invoke a centralized planner.
Decompositions
The main idea behind developing such a criterion is decom-
posing the multi-agent task into a set of minimally interact-
ing single-agent tasks. If this can be done, and some addi-
tional criteria are met – the task is robust. Here we lay out
the relevant definitions:

Given an MA-STRIPS problem Π =
〈F , {Ai}ni=1, I, {Gi}ni=1〉, let decomposition {Fi}ni=0
be a partition of F into n + 1 subsets. The semantics are
that Fi is a set of propositions associated with agent i, and
F0 are the global propositions – for example, the existence
of a road usable by all agents.

Given a decomposition, define Di = Fi ∪ F0 – the rele-
vant set of propositions for agent i. This allows us to define
the individual projections for each agent based on their rel-
evant sets as ΠDi

i = 〈FDi ,ADi , IDi , GDi〉. We denote by
ΠD the set of projections {ΠDi

i }ni=1. The set of all interleav-
ing plans of ΠD is denoted by π[n](ΠD). We say that ΠD is
rationally robust if π[n](ΠD) ⊆ π(Πc). Note that natural
projections admit the decomposition F0 = F and Fi = ∅
for each i ∈ [n].

SinceADi
i ⊆ Ai for each i ∈ [n], a decomposition consti-

tutes a social law in terms of action restrictions. Thus, from
all possible decompositions we expose one that has an in-
trinsic connection to rational robustness:

Definition 3 (Delete decomposition). Let Π =
〈F , {Ai}ni=1, I, {Gi}ni=1〉 be an MA-STRIPS problem.
{Fi}ni=0 is a delete decomposition of Π if:

• ∀i ∈ [n] : Fi = del(Ai).
• F0 = F \

⋃n
i=1 del(Ai).

• ∀i, j ∈ [n] ∪ {0}, i 6= j : Fi ∩ Fj = ∅
In a delete decomposition Di includes only propositions

that no one but the agent i can delete. Such a decomposition
is not guaranteed to exist for every problem, and we label the
task delete-decomposable if it does have a delete decompo-
sition. We proceed to show that the delete-decomposability
of a task, along with some technical requirements, guaran-
tees that the problem in question is rationally robust. To for-
malize this claim and prove it, we require some additional
definitions first:
• Useless actions – actions that do not appear in any indi-

vidual plan. An action that is not useless is called useful.
• Useless propositions – propositions that do not appear as

preconditions for any useful action.

Now we have the tool set to formally establish the con-
nection between the delete-decomposability and the rational
robustness using the following pair of theorems:

Theorem 2 (Decomposability condition). Consider an MA-
STRIPS problem Π = 〈F , {Ai}ni=1, I, {Gi}ni=1〉. If Π has
no waitfor preconditions, is rationally robust, has no use-
less actions and no useless propositions, then Π is delete-
decomposable.

Proof. We need to prove the existence of a delete decompo-
sition {F}ni=0, where each Fi = del(Ai) for each i > 0,
i.e. it is required to show that {F}ni=0 is a partition. F0 is
always disjoint from the rest of the Fi’s by definition, so it
is sufficient to show that ∀i, j ∈ [n], i 6= j : Fi ∩ Fj = ∅

Assume by contradiction that there exists some f ∈ F
and a pair of agents i, j such that f ∈ Fi ∩ Fj . Thus,
there are two actions ai ∈ Ai, aj ∈ Aj such that f ∈
del(ai) ∩ del(aj). Given that f is not useless there is some
useful action a′ such that f ∈ pre(a′).

Let a′ ∈ Az . Since there are no useless actions, a′ be-
longs to some plan of agent z, denoted πz . Let πi and πj
be the plans of agents i and j respectively, that include the
actions ai and aj respectively. Assume, WLOG, that i 6= z.
There is an interleaving execution where ai appears imme-
diately before a′, resulting in failure in the execution. This
contradicts the robustness of Π.

The second theorem is an attempt to establish the link
in the opposite direction – what is needed for a delete-
decomposable task to be rationally robust. Here the condi-
tions are much stricter, since i’s goals and the preconditions
of i’s actions should be in i’s control too for the rational ro-
bustness to emerge. Formally:

Theorem 3 (Robustness condition). Consider a delete-
decomposable problem with no waitfor preconditions Π =
〈F , {Ai}ni=1, I, {Gi}ni=1〉, with the relevant sets {Di}ni=1. If
∀i ∈ [n] : pre(Ai)∪Gi ⊆ Di, and for each i individual task
Πi = 〈F ,Ai, I, Gi〉 is solvable, Π is robust.

Proof. Assume by contradiction Π is not robust. Thus,
π[n](Π) 6⊆ π(Πc), i.e. execution of some interleaving of in-
dividual plans leads to failure or Gc is not achieved.

Goal achievement – for each agent i we know that πi is
a solution, which means if we apply πi to I , we achieve Gi.
Since we assumed Gi ⊆ Di, no element of it can be deleted
by action not inAi. Thus no action fromAj 6=i will have any
effect on Gi, which will still be achieved after executing last
action in πi. This reasoning can be applied to any agent, thus
the execution achieves Gc.

Possibility of execution – Assume by contradiction that
there exists some π = a1..am – an interleaving of individual
plans for Π leading to a failure. Let ak (k ∈ [m]) be the first
action that can not be applied. Let π|k−1 be the k−1 prefix of
the plan, so sk−1 := s0Jπ|k−1K. Since ak is not applicable,
it holds that pre(ak) 6⊆ sk1 , i.e., there is f ∈ pre(ak) such
that f /∈ sk−1. Such f can be missing from sk−1 for three
reasons:

1. f was not a part of any state before sk−1, i.e. f /∈ I , and
was never added.



Figure 1: Crossroads Example (smileys denote agents).

2. f appeared in some state before sk−1, but was last deleted
by the same agent i that performs action ak.

3. f appeared in some state before sk−1, but was last deleted
by some agent j 6= i.

We now show that all three cases are impossible:
Case 1 and Case 2: Recall that π is an interleaving of

individual solutions, i.e. the relative order of actions in πi is
preserved in π. Moreover, we know that πi is a solution, thus
it is executable. This means that after executing the action
immediately preceding ak in πi, f must be true, hence cases
1 and 2 are impossible.

Case 3: Recall that Π is assumed to be decomposable and
pre(Ai) ⊆ Di. This means f ∈ Di. By definition, all propo-
sitions that can be deleted by j are in Fj , and also by defini-
tion, Fj ∩Di = ∅, i.e., f can not be deleted by any j 6= i.

We have shown that execution of any arbitrary π is always
possible and always achieves Gc, thus Π is robust.

Notice that Theorem 3 only requires verifying that in-
dividual problems are solvable, thus invoking no central-
ized planner. Checking decomposability and basic set opera-
tions on preconditions and goals all require polynomial time.
This differs radically from the robustness verifying proce-
dure given by Karpas et al. (2017), which, although com-
plete, requires a centralized planning procedure.

The Power of Waitfor
So far, we limited our discussion to the setting where there
are no waitfor preconditions for actions. Introducing wait-
fors changes the picture. For example the two theorems
proven above are no longer valid. However, in what follows
we uncover some deeper connections between robustness
and waitfors, as well as their usability and limitations.

Usefulness of waitfors We first present a short and infor-
mal example to convey the usefulness of waitfors. Consider
a rectangular grid where agents can move to one of 4 adja-
cent tiles, given this tile is not occupied by another agent. In
a layout shown in Figure 1, assume agent 1 can only move
left or right, and agent 2 can only move up or down. The
problem with no waitfor preconditions is not rationally ro-
bust, while if we mark the ”not occupied” precondition as
waitfor, the problem becomes robust.

Consequences of introducing new waitfors As was
shown above, marking preconditions as waitfor can be ben-
eficial, i.e. turn a non-robust problem into a robust one. In
what follows we claim that marking preconditions as wait-
for does no harm, i.e., it cannot turn a robust problem to a
non-robust one. This claim can be considered a generaliza-
tion of Thm. 1. Formally:

Theorem 4. Consider a MA-STRIPS task Π =
〈F, {Ai}ni=1, I, {Gi}ni=1〉. Let Πl be a social law
that is identical to Π with respect to atoms, initial
state and goals. The actions of Πl are defined as:
∀i ∈ [n], a ∈ Ai,∃!al ∈ Al

i such that

1. add(ai) = add(ali), del(ai) = del(ali);
2. pre(ai) = pre(ali), prew(ai) ⊆ prew(ali).

Then, π[n]
rw (Π) ⊆ π(Πc) =⇒ π[n]

rw (Π) = π[n]
rw (Πl).

In what follows, we assume the actions Ac and Al
c to be

identical name-wise for the sake of set of plans comparison.

Lemma 1. Let Π and Πl to be as described in Thm. 4. Then,
π[n]

rw (Πl) ⊆ π[n]
rw (Π).

Proof. Let πl ∈ π[n]
rw (Πl). If πl is a plan, we have that π ∈

π[n]
rw (Π), since for each al ∈ πl we have pre(al) = pre(a).

Otherwise, assume in contradiction that π /∈ π[n]
rw (Π). Then,

there is a failure at the execution of action number k along-
side π, denote it ak. The failure to execute ak means that
there is an atom f ∈ prew(ak), such that f 6∈ IJπ|k−1K but
by definition of l we have that f ∈ prew(ak) ⊆ prew(alk).
This contradicts that πl ∈ π[n]

rw (Πl).
Now we give the proof of Thm. 4.

Proof. The direction π[n]
rw (Πl) ⊆ π[n]

rw (Π) is due to Lem. 1.
We shall prove inclusion in other direction. Let πl ∈
π[n]

rw (Π) ⊆ π(Πc). Since π is a plan for Πc, there are no
conflicts in π. Thus, π[n]

rw (Π) ⊆ π[n]
rw (Πl).

Lastly, we establish equivalence between the set of joint
plans for Π and Πl:

Lemma 2. π(Πc) = π(Πl
c)

Proof. Note that Πc and Πl
c being a classical planning prob-

lems are agnostic to waitfors. And without this distinction,
Πl

c = Πc by definition.
An immediate corollary of Thm. 4 and Lem. 2 is that

declaring any precondition of any action as waitfor will not
invalidate the robustness of the task.

Corollary 1. π[n]
rw (Π) ⊆ π(Πc) =⇒ π[n]

rw (Πl) ⊆ π(Πl
c).

This means there is nothing to gain from a robustness per-
spective from leaving some precondition non-waitfor. This
observation may be useful for developing social law synthe-
sis tools, as the search space for a robust social law may be
restricted to all-waitfor tasks only.

Conclusion
We have discussed the applicability and usefulness of wait-
for preconditions in social laws. We have established a
strong connection between delete-decomposability of a task
and its robustness in the absence of waitfor preconditions.
We have also shown that marking precondition as waitfor
cannot destroy robustness, but might achieve it – and is thus
always beneficial. Thus, the main limitation is access to sen-
sors which enable implementing waitfor preconditions on
the agent.



References
Brafman, R. I.; and Domshlak, C. 2008. From one to
many: Planning for loosely coupled multi-agent systems. In
ICAPS 2008 - Proceedings of the 18th International Confer-
ence on Automated Planning and Scheduling, 28–35. ISBN
9781577353867. URL www.aaai.org.
Fikes, R.; and Nilsson, N. J. 1971. STRIPS: A New Ap-
proach to the Application of Theorem Proving to Problem
Solving. Artif. Intell. 2(3/4): 189–208. doi:10.1016/0004-
3702(71)90010-5. URL http://dx.doi.org/10.1016/0004-
3702(71)90010-5.
Karpas, E.; Shleyfman, A.; and Tennenholtz, M. 2017.
Automated verification of social law robustness in strips.
In Proceedings International Conference on Automated
Planning and Scheduling, ICAPS, 163–171. ISBN
9781577357896. ISSN 23340843.
Tenneholtz, N.; and Moses, Y. 1989. On Cooperation in a
Multi-Entity Model. In International Joint Conference on
Artificial Intelligence, 918–936. URL https://www.ijcai.org/
Proceedings/89-2/Papers/011.pdf.
Tuisov, A.; and Karpas, E. 2020. Automated verification of
social law robustness for reactive agents. ECAI 325: 2386–
2393. ISSN 09226389. doi:10.3233/FAIA200369.

www.aaai.org
http://dx.doi.org/10.1016/0004-3702(71)90010-5
http://dx.doi.org/10.1016/0004-3702(71)90010-5
https://www.ijcai.org/Proceedings/89-2/Papers/011.pdf
https://www.ijcai.org/Proceedings/89-2/Papers/011.pdf

	Introduction
	Background
	Multi-agent Problem Formalism
	Execution Model
	Social laws
	Robustness of a Social Law

	Robustness and Single-agent Decomposition
	Decompositions

	The Power of Waitfor
	Conclusion


