
Sailing Towards an Expressive Scheduling Language for Europa Clipper

Adrien Maillard and Marijke Jorritsma and Steve Schaffer
Jet Propulsion Laboratory, California Institute of Technology

4800 Oak Grove Drive
Pasadena, California 91109

Abstract

The mission planners for NASA’s Europa Clipper deep-space
mission use automated scheduling software to generate ac-
tivity plans and command sequences for multiple instru-
ments and subsystems before sending the sequences for ex-
ecution on board. Both science and engineering planners
must translate their intents into expressions of mission con-
straints, goals, and preferences that the scheduling engine un-
derstands. This paper describes the ongoing development of a
dedicated domain-specific java-embedded language that can
efficiently and accurately capture such concerns for the Eu-
ropa Clipper mission, along with a user-interface companion
for the language.

Introduction
Automated scheduling for space missions present some
unique challenges as it involves controlling high-risk assets
far from possible human intervention over extended periods
of time. A spacecraft has numerous systems that may be run-
ning concurrently each with different operating constraints.
Each plan comprises hundreds of activities and must ensure
appropriate use of critical resources such as memory or en-
ergy. These plans, which are developed pre-launch, are it-
eratively updated with new model information and are in-
tended for use in ground operations throughout the entire
mission (Chien et al. 2021).

The Advanced Multi-Mission Operations System (AM-
MOS) is a NASA program managed by the Multi-mission
Ground Systems and Services Program Office. Its objective
is to provide on-the-shelf software for Ground Data Systems
(GDS). Table 1 (Basilio and Di Pasquale 2017) shows the
part of AMMOS GDS software and hardware in 4 NASA
missions. It can be seen that AMMOS is a sizeable part of
the ground data systems of these missions.

Among AMMOS current developments, AERIE will be
the next-generation multi-mission activity planning and sim-
ulation software framework. Its Merlin and Falcon compo-
nents are customizable for mission-specific needs and will
replace multiple legacy tools currently in use. Among these,
Merlin is the activity planning component which will re-
place APGEN (Maldague et al. 2014; 1998) in AMMOS.

© 2021, California Institute of Technology. Government sponsor-
ship acknowledged.

Project Cost in GDS
(M$)

from AMMOS

Mars Exploration Rover 11.3 68%
Mars Reconnaissance
Orbiter

9.7 97%

Spitzer Space Telescope 12.0 71%
Dawn 9.2 95%

Table 1: Part of AMMOS GDS software and hardware in
several NASA missions. From (Basilio and Di Pasquale
2017) .

The objective of the present work is to develop a scheduling
prototype for Merlin. Falcon is the sequencing tool.

The other context of this research is the Europa Clipper
mission,a NASA interplanetary mission whose goal is to
study Jupiter’s moon, Europa, through a series of 44 close
flybys. It is scheduled to launch in October 2024 and arrive
in the Jovian system in April 2030. The spacecraft will carry
9 instruments to study Europa’s interior, ocean, geology,
chemistry, and habitability (Bayer et al. 2019), each con-
ducting multiple coordinated science campaigns. Science
planning for such a complex mission presents numerous op-
erational constraints on the spacecraft in order to achieve
measurement requirements on observing geometry, target il-
lumination, spacecraft pointing, instrument mode, and ob-
servation timing/cadence (Pinover et al. 2020). In order to
ensure coverage of the concrete details of realistic mission
scheduling use cases, the scheduling prototype was under-
taken within a cycle of direct user feedback sessions with
engineering and science planners from the Europa Clipper
team.

This paper focuses on the modeling language and user in-
terface that has been developed as elements of this multi-
mission scheduler. In the remainder of this paper, we (1)
present a new domain specific language for expressing sci-
ence scheduling goals embedded within the Java program-
ming language, (2) describe the development of a user in-
terface companion to express the same concepts in a graph-
ical manner, and (3) describe the scheduling approach that
is currently in development. For each of these subjects, we
also describe the directions of ongoing development.

Expressions of Goals
Mission and science planners must be able to express the
goals, constraints, and preferences surrounding the activities
to be scheduled. Example 1.1 is a realistic example of an ac-
tivity scheduling goal for a plasma instrument that will help
us define some important terms. The activity being sched-
uled here is a Plasma Instrument Calibration Roll. We will
use the term activity type to describe its unique descrip-
tion concept and activity instance to describe its multiple
instantiations within a plan. Item (1) of the example goal
states that one instance of this activity must be scheduled
for each encounter, which refers to each interval over which
the spacecraft approaches, flies over, and departs from one
of the moons of Jupiter (Callisto, Ganymede, or Europa).
The nominal trajectory for Europa Clipper takes the space-
craft past each moon multiple times. Item (2) and (3) add
constraints on state variables. State variables are time-
varying values of different types (such as boolean, float, inte-
ger, or enumerated) that may represent such system facts as
the spacecraft’s altitude, the battery energy level, a data vol-
ume, or being eclipsed by Jupiter. Constraints on state vari-
ables restrict the times at which each activity can be sched-
uled. Item (4) adds a mutual exclusion constraint with other
activities using pointing capabilities, forbidding concurrent
execution. Items (5)-(8) define subgoals needed to achieve
this goal. Item (8)(a) expresses a preference on the choice
of the roll attitude, defining a small minimization problem.
Item (9) expresses the possible mutualization of activities
for satisfying several goals, stating that magnetometer cal-
ibration rolls with a certain parameterization can count for
plasma instrument calibration rolls. If the scheduler is able
to take advantage of this, it can reduce the total number of
calibration activities in the plan and allow more time for sci-
ence activities.

Note that this mixed declarative/imperative goal expres-
sion has been extracted from and mirrors a purely procedu-
ral APGEN scheduler specification that expanded explicitly
to all necessary sub-activities (but with more arduous mod-
ularization and opportunity analysis).

A Java-embedded textual language has been designed to
efficiently express such scheduling goals and constraints en-
countered frequently in the Europa Clipper mission domain.
In the following subsections, we will describe the building
blocks of this language and how they can be combined to
form complex expressions.

Activity types
There is a distinction between an activity type and an activ-
ity instance. An activity type consists of a name and a list
of named parameters. An activity instance has a type and
concrete values for all of the parameters of its type. Most of
the time, the objective of the language described here is to
provide a compact way to specify how multiple activity in-
stances of the same activity type should be scheduled under
some constraints.

Temporal expressions
One of the most basic constructs used in the language is
the temporal expression. Temporal expressions are sets of

Example 1.1: Plasma Instrument Calibration Roll

Schedule Plasma Instrument Calibration Roll activity
(1) once for each encounter

(a) except when the target is Ganymede
(2) when distance to Jupiter < 8× radius of Jupiter
(3) when target altitude > 1.5× 108m
(4) when not doing another activity that uses pointing
(5) roll about X-axis ≥ 100◦ within < 2hr
(6) put Plasma Instrument in calibration mode

(a) and back to survey after
(7) with parking of solar arrays at 25◦ during roll

(a) and back to Sun-tracking after
(8) with initial slew to roll attitude

(a) picked to minimize cryocooler exposure
(b) and slew back to Earth-point after

(9) Magnetometer Calibration Rolls count for Plasma
Instrument Calibration Rolls but only if

(a) rolling about X-axis
(b) aligned to Plasma Instrument exposure
(c) solar arrays are parked
(d) plasma instrument is in Calibrate mode
(e) meets other geometric criteria above

(Numeric quantities have been sanitized.)

non-overlapping time intervals. In a temporal expression,
any two intervals can share a bound (upper bound for one,
lower bound for the other). There are several ways for ex-
pressing temporal expressions, whether tied to activities al-
ready present in the schedule, conditioned on state values, or
a combination of both. Providing sufficient expressivity and
modularity for temporal expressions is central to enabling
users to communicate when activities must be scheduled.

Activity expressions An activity expression allows users
to reference the time intervals during which already-present
activities are scheduled. Each interval of the resulting tem-
poral expression is made of start and end times of activities.
A simple activity expression is shown in Listing 1. At the
point it is evaluated, the expression will return the time in-
tervals when any scheduled activity exists with type equal
to RollActivityType and a parameter named angle
equal to 270.

1 ActivityExpression rollActExpr = new

ActivityExpression.Builder()

2 .ofType("RollActivityType")

3 .withParameter("angle", 270)

4 .build();

Listing 1: Example activity expression.

It is also possible to combine simple statements in con-
junctions or disjunctions such as in Listing 2.

1 ActivityExpression actExprDisjunction = new

ActivityExpression.OrBuilder()

2 .or(new ActivityExpression.Builder()

3 .ofType("RollActivityType")

4 .build())

5 .or(new ActivityExpression.Builder()

6 .ofType("SlewActivityType")

7 .withParameter("axis", BodyAxis.X)

8 .build())

9 .build();

Listing 2: Example disjunctive activity expression.

Note that the disjunction of two expressions whose co-
domain is a temporal expression is the union of the two tem-
poral expressions. Similarly, the conjunction of these two
expressions is the intersection of the co-domains. These ex-
pressions cannot be statically evaluated because they depend
on the current state of the schedule, and are thus evaluated
dynamically during scheduling.

State constraint expressions A state constraint expres-
sion allows users to specify the time intervals during which a
state variable satisfies a condition on its value. For example,
the conjunction of 3 elementary state expressions shown in
Listing 3 models all the intervals during which the encounter
phase state is equal to Encounter, the altitude state is
between 20 and 50km, and the altitude derivative state is
greater than 0.0km/s. Operators include, but are not limited
to: equal, between, above, and below. State constraint ex-
pressions can be used in scheduling goals, but can also be
attached directly to an activity type to confer that all their
instantiations are constrained by it.

1 StateConstraintExpression approachStateConstraint =

new StateConstraintExpression.Builder()

2 .andBuilder()

3 .equal(encounterPhase, OrbitPhasesEnum.ENCOUNTER)

4 .between(altitude, 20, 50)

5 .above(altitudeDerivative, 0.0)

6 .build();

Listing 3: Example conjunctive state constraint expression.

Composite temporal expressions Composite temporal
expressions are a way of combining activity, state constraint,
and other composite temporal expressions together through
disjunction or conjunction. Listing 4 shows the conjunction
of the activity expression defined in Listing 2 and of the state
constraint defined in Listing 3.

1 TimeRangeExpression combined = new TimeRangeExpression

2 .Builder().andBuilder()

3 .from(approachStateConstraint)

4 .from(actExprDisjunction)

5 .build();

Listing 4: Example composite temporal expression.

A variant of composite temporal expression allows con-
ditioning on the transitions (or lack thereof) in a state’s
value, as shown in Listing 5. If downlinkPassWindows
represents all the available communication intervals and
the dlRate state represents the available bandwidth that
changes within each such pass, the combined expression
would model all intervals of each constant downlink rate
within the downlink windows. A rate-switching activity
could then be scheduled for each derived interval.

1 TimeRangeExpression dlRates = new TimeRangeExpression

2 .Builder()

3 .from(downlinkPassWindows)

4 .ofEachValue(dlRate)

5 .build();

Listing 5: Example constant-value composite expression.

Composite temporal expressions also allow users to ap-
ply filter and transform operations on time windows from
other expressions. Filters selectively retain only time win-
dows meeting some criteria while transforms modify each
window by expansion, contraction, or shifting manipula-
tions. Listing 6 shows how to apply a minimum duration
filter of 20 seconds to exclude tiny windows, followed by a
transform to extend each remaining interval by 1 second at
both ends as a margin strategy.

1 TimeRangeExpression filterExpressions = new

TimeRangeExpression.Builder()

2 .from(downlinkPassWindows)

3 .thenFilter(Filters.minDuration(ofSeconds(20)))

4 .thenTransform(Transforms.extend(

5 ofSeconds(1), ofSeconds(1)))

6 .build();

Listing 6: Example filter / transform expression.

Possible operations may be stateless as seen in Listing 6,
but may also be stateful and context-dependent as in List-
ing 7 and Figure 1, which shows a variation of the previous
filter. In this case, an encounter is a long period in which
there are many downlink windows. For each encounter, we
want to apply an initially more aggressive filter until the first
matching downlink window is found, and then loosen the fil-
ter for all subsequent downlinks in the same encounter. This
construction forms a latching filter object that can be then
used the same as a regular filter.

1 TimeWindowsFilter dlDurationFilter = new Filters.

LatchingBuilder()

2 .withinEach(encounter)

3 .filterFirstBy(Filters.minDuration(ofSeconds(20)

))

4 .thenFilterBy(Filters.minDuration(ofSeconds(10)

))

5 .build();

Listing 7: Example latching filter.

Time expressions Individual time points can be abso-
lute fixed temporal values, but may also be defined rel-
atively. The basic START and END time anchors specify

Figure 1: Example showing the application of a latching du-
ration filter on download windows with a flyby as a reference
period.

a single time point relative to the start or end of an in-
terval, and may be extended with simple arithmetic. List-
ing 8 shows how a time point can be computed from
one anchor and two durations. Note that this expres-
sion construct is not attached to any particular interval
yet; it is functional and can be used to define relative
start and end times of activities during goal definition.

1 TimeExpression actStart = new TimeExpression.Builder()

2 .from(TimeAnchor.START)

3 .minus(warmupDuration)

4 .minus(startingDuration)

5 .build();

Listing 8: Example relative time expression

Goals
Goals are expressions focusing on scheduling a particular
consistent set of activity instances. They may be only par-
tially achievable. In our setting, many users create their goals
separately with a limited view of the overall set of goals and
they are all aggregated to be solved together. A notional goal
is made of

• a name,

• a scheduling priority which reflects its scheduling order
relative to other goals,

• a temporal scope during which the goal is applicable,
which may be different from the overall scheduling hori-
zon. In other words, there will be no attempt to satisfy the
goal outside of its temporal scope.

• an activity expression, describing the type of activity
whose instantiates may satisfy the goal, along with any
specific parameter values for these instances

• an optional state constraint expression constraining the
periods during which it is possible to schedule the activity
instances

In the next paragraphs we will see that several flavors of
goals exist.

Coexistence goal A coexistence goal is a type of goal in
which activity instances are scheduled with respect to an ex-
isting set of time periods, be those instances of another ac-
tivity type or a conjunction of state values. As this goal is
dependent/relative on other conditions or activities, it is im-
portant to mind the order in which it will be processed during
the scheduler operation.

Listing 9 gives an example of the syntax of a coexistence
goal that requests one roll activity (previously shown) for

each interval during which the approach state constraint is
valid. In this example, start and end times are specified with
regard to the start and end of each state constraint interval, as
seen before with time expressions. The approach state con-
straint can be replaced with any temporal expression.

1 CoexistenceGoal goal = new CoexistenceGoal

2 .Builder()

3 .thereExists(rollActExpr)

4 .forEach(approachStateConstraint)

5 .startAt(TimeAnchor.Start)

6 .endsAt(TimeAnchor.End)

7 .named("calibrationactitivitygoal")

8 .withPriority(7.0)

9 .build();

Listing 9: Example coexistence goal

While it is possible to define start and end times as well
as durations in the goals, some activities have their own du-
ration model which may depend on internal physical con-
straints. In this case, the user would not specify all of the
temporal parameters.

Frequency goal A frequency goal expresses the need for
scheduling activities at a regular cadence, i.e. a set of activ-
ities separated by a specific range of durations. Listing 10
shows a frequency goal requesting one calibration activity
every two hours for all the time defined by the absolute
timeperiod interval. This example also includes states
constraints restricting the periods during which it is possible
to schedule activities. Such constraints might make the strict
frequency goal unachievable if there are no permissible win-
dows aligned to the proper frequency.

1 FrequencyGoal goal = new FrequencyGoal

2 .Builder()

3 .thereExists(calibrationActType)

4 .every(Duration.ofHours(2))

5 .forAllTimeIn(timeperiod)

6 .attachStateConstraint(approachStateConstraint)

7 .named("FrequencyGoalExample")

8 .withPriority(8.0)

9 .build();

Listing 10: Example frequency goal

Duration goal A Duration goal expresses the need for
scheduling a number of activities whose total duration lies in
a range of durations. Listing 11 shows an example of such a
goal in which 3 to 4 calibration activities must be scheduled
for a total duration of 15 to 17 hours. Note that the dura-
tion of activity instances may not be directly controllable
and instead defined within the activity type model, which
may make the goal unachievable.

1 DurationGoal goal = new DurationGoal

2 .Builder()

3 .thereExists(calibrationActType)

4 .totalDuration(Range.of(.ofHours(15), .ofHours(17)

)

5 .cardinal(Range.of(3,4))

6 .forAllTimeIn(timePeriod)

7 .named("DurationGoalExample")

8 .withPriority(9.0)

9 .build();

Listing 11: Example duration goal

Procedural goals Some specific activities may have their
own ineffable scheduling logic and either (1) provide the
necessary activity instances directly as an input to our sched-
uler after generation within some external software or pro-
cess or (2) design their own domain scheduler in an im-
perative manner to be integrated in the mission model. For
integration with these possibilities, a procedural goal may
be defined that accepts some user-specified black-box func-
tion that takes the current schedule and returns any requested
new activity instances. The function is then executed at the
appropriate priority-ordered step in the scheduling process,
and the scheduler will attempt to insert any returned in-
stances into the growing plan. Listing 12 shows a procedural
goal used to provide raw activity instances to the scheduler.
The function is reduced to the minimum, providing a list of
hard-coded activity instances and ignores the current sched-
ule argument.

1 var activities = java.util.List.of(act1, act2);

2 Function<Plan, Collection<ActivityInstance>> generator

3 = (schedule) -> activities;

4

5 var proceduralGoal = new ProceduralGoal.Builder()

6 .forAllTimeIn(timePeriod)

7 .generateWith(generator)

8 .named("ProceduralGoalExample")

9 .withPriority(7.0)

10 .build();

Listing 12: Example procedural goal

Composite goals A composite goal is a conjunction or
disjunction of other goals. The conjunctive composite re-
quires satisfaction of each subgoal while the disjunctive only
requires one of its subgoals be satisfied. Listing 13 shows
how to form a goal from the conjunction of three subgoals.
While the composite goal has its own priority to order it
within the wider scheduling process, the subgoals are or-
dered according to their relative priority within the compos-
ite. This construct opens up the specification of task decom-
position trees, similar to Hierarchical Task Networks, with
conjunctions of subgoals being analogous to subtasks and
disjunctions being analogous to methods.

1 var downlinkGoal = new CompositeAndGoal.Builder()

2 .forAllTimeIn(planningHorizon)

3 .and(beforeDownlink)

4 .and(duringDownlinkGoal)

5 .and(afterDownlinkGoal)

6 .named("CompositeGoalExample")

7 .withPriority(7.0)

8 .build();

Listing 13: Example composite goal

Global constraints

A constraint is said to be global when it is not attached to a
specific goal or its activity instances, but rather to the whole
scheduling problem, meaning it must be enforced every time
a change is made to the schedule in service of any goal. A
global constraint may be set on resources to prevent over-
subscription (e.g. energy or memory) or on activity types
such as to prevent parallel execution of certain activity types
(a mutual exclusion constraint). Our language only models
these two types of global constraints for now. Listing 14
shows an example of mutex constraint disallowing the par-
allel execution of three activity types.

1 var exampleMutexConstraint = GlobalConstraint.

2 atMostOneOf(List.of(

3 ActivityExpression.ofType(actType1),

4 ActivityExpression.ofType(actType2),

5 ActivityExpression.ofType(actType3)

6));

Listing 14: Example n-ary mutex constraint

Preferences

Preferences (or soft constraints) allow the user to define
what should happen when a goal can be satisfied in more
than one way; in other words, how the scheduler should
behave when there is flexibility. For example, there may
be several ways of satisfying the duration goal defined in
Listing 11: scheduling 3 activities lasting 5 hours each or
scheduling 4 activities lasting 4 hours each, etc. One pref-
erence in this case may be be to minimize the total number
of activities, trying to schedule 3 activities rather than 4. It
can also consist in trying to schedule activities with similar
durations.

The only preference that can be specified by the user in
the current version of the language concerns the satisfaction
of composite goals. Listing 15 shows the definition of a con-
junction composite goal in which the second goal is made of
a disjunction goal with a preference stating that the preferred
subgoal is the one in which the scheduled activity instances
start at the latest possible time.

1 var downlinkGoal = new CompositeAndGoal.Builder()

2 .forAllTimeIn(timePeriod)

3 .and(downlinkGoal)

4 .and(new OptionGoal.Builder()

5 .exactlyOneOf()

6 .or(slowSetupDownlinkGoal)

7 .or(fastSetupDownlinkGoal)

8 .optimizingFor(Optimizers.latestStartTime())

9 .build())

10 .build()

Listing 15: Example preference

It might be difficult to express scheduling preferences
as they may depend on internalized unconscious domain-
dependant knowledge. In practice, it is only when the user
is confronted with a concrete schedule that they can point
to what is not right, and then modify the handles at their
disposal to steer the results in the desired direction. As a re-
sult, defining what kind of preferences will be included in
the language is an ongoing user-focused research topic.

Designing a User Interface
To extend access of the scheduling software to users who
are less familiar with programming in Java, a companion
user-interface (UI) was designed in parallel with the domain-
specific language. Through visual styling and patterns of in-
teraction, the UI aims to provide users with guardrails for
authoring expressions and goals that effectively achieve their
intended scheduling outcome. Our design proposes that the
companion UI and the code editor be presented side-by-side
in the application and simultaneously updated in real-time,
regardless of which interface is used, so that users can see
how the UI translates into code and vice versa.

Constraint authoring in a user-interface has been imple-
mented in other planning software such as Science Opportu-
nity Analyzer (SOA) (Llopis et al. 2019), a science planning
tool used by the DAWN and PSYCHE missions. In SOA’s
opportunity search query builder, users work in a UI to con-
nect boxes together to specify the geometric conditions for
which they would like to schedule an observation. To spec-
ify the details of a geometric constraint such as a distance
constraint, users select the constraint box to pull up a contex-
tual panel to input the details of their constraint, such as dis-
tance from the target body. The benefit of SOA’s constraint
authoring UI is that it leverages visual design to scaffold
the authoring experience by separating the specification of
the constraint type in one window and the contextual details
panel in another. This design simplifies the editing process
as it allows users to quickly find and make changes to the
parameters of a selected constraint.

To create a UI for Europa Clipper’s scheduling syntax we
designed an interface that would allow users to specify an
opportunity for an observation and how they would like one
or more activities to occur within that opportunity window.
To do this we categorized the expressions into four different
categories and created a design system that uses patterns of
interaction and visual styling to help the user author achieve
their scheduling goals. Expression types are represented as
boxes that can be arranged in relation to other boxes and

connected through lines.

Figure 2: Example scheduling goal defined in UI

UI Components and patterns of interaction
The following section describes the different components
of the UI syntax, broken into four categories; (1) Variable
blocks, (2) Reference blocks, (3) Scheduling Opportunities,
and (4) Scheduling Specifications.

Variable Blocks
Goals, windows, and constraint expression composites are
designed as Variable blocks. Variable blocks allow users to
create a new goal or window by clicking directly in the box
to give it a new name and connecting it to a Definition block.

Figure 3: Constraint Composite block including of three dif-
ferent constraints

Reference Blocks
Activity types, activity parameters, and states are designed
as Reference Blocks. Each reference box allows the user to

pick from predefined lists that represent the activity types,
activity parameters, and state detailed in the adaptation.

Figure 4: Activity parameters are available through a drop-
down menu in an Activity Parameter block connected to an
Activity block

Scheduling Opportunities
Definition blocks are connected to a Variable block to al-
low users to define the conditions for which they would like
to schedule an activity. Multiple Definition blocks can be
used in one scheduling goal if it contains multiple Variable
blocks. The following blocks can be placed within a Defini-
tion block to define a scheduling opportunity.

Figure 5: Activity parameters are available through a drop-
down menu in an Activity Parameter block connected to an
Activity block

Constraint Expression blocks including Geometric, Tem-
poral, State, Activity Relational, Epoch, and Duration can be
placed into a definition block to define a scheduling oppor-
tunity goal. Each constraint type is designed such that the
inputs for the specified constraint are exposed to the user.

Composite blocks allow users to combine two or more
state and or constraint values, or goals.

Transform blocks allow users to transform Time Range
Expressions (referred in the UI as ”windows”) by filtering,
contracting, or subtracting times. This can be applied to an
entire window or unique values within that window.

Scheduling Specifications
Frequency Constraint blocks allow users to specify the num-
ber of activity instances that must occur during a defined
scheduling window. Activity parameters blocks and Activity
Attribute blocks may be connected to activity type blocks to
further specify how an activity should be scheduled into the
timeline.

Future work in UI
Future development of the companion UI will focus on de-
veloping a UI such that it can translate and produce the code
syntax in real time. Additional design work includes devel-
oping blocks for Mutual Exclusion Constraints and Prefer-
ences. During user testing, test subjects requested a ”tool-
box” to help locate block types easily, so an information ar-
chitecture for organizing block types will also be designed
and tested. Additional design work beyond the above men-
tioned, will be informed by user testing and development of
the syntax.

Scheduling
The scheduling algorithm is a constructive algorithm in
which goals are scheduled in priority-first order. To schedule
a given goal, valid constraint intervals are computed and the
current schedule is examined to look for activities already
present and satisfying the goal. If this is not the case, the
goal will generate conflicts. Conflicts can be resolved with
different possible resolutions, based on heuristically chosen
start times for activities when several are available. This way
of allocating responsibilities between scheduler and goal al-
lows for more flexibility in terms of scheduling algorithms.
Such a simple approach has its drawbacks in terms of re-
sulting schedule quality but it has advantages in our setting.
Priorities are an easy way of expressing preferences but in
practice, it is usually difficult to discriminate between sci-
entific activities. Scheduling priority are rather an easily un-
derstandable handle for tweaking the results when mission/-
science planners are not satisfied with the resulting schedule.

Future work in scheduling
The scheduling aspects of this work are still in their early
stage as the focus has been given to developing the language
for expressing goals. There are several paths are envisioned
with regard to scheduling.

Other search strategies Because of the current greedy
scheduling strategy and the fact that goals are totally or-
dered, the explored search space is reduced to a minimum,
decision-making being necessary only when temporal flex-
ibility exists for activities. This might prevent the achieve-
ments of low-priority goals because of early commitment

for goals higher in the priority list. An approach worth ex-
ploring is reasoning over bins of priorities that would con-
tain several goals, thus allowing for more exploration while
keeping dimensionality low.

Explainability Interpreting the results of a scheduler pro-
cessing hundreds of states on long scheduling horizons is
a challenge for the mission planners. Our goal is to pro-
vide explainability features to mission planners and opera-
tors. One good recent example is in the context of the task
scheduling for Perseverance, the Mars 2020 rover. Cross-
check (Agrawal, Yelamanchili, and Chien 2020) has been
developed to provide explanations as to why some activi-
ties failed to be scheduled by analyzing constraint intervals
and resource consumption. We expect that this development
will be user-focused, as to provide explanations to most fre-
quently asked questions about the produced schedules. For
example, these will include explanations about why a goal
has failed to be satisfied but also about the choices leading
to the current start time of scheduled activities or the usage
history of a resource.

Mixed-initiative scheduling The current scheduling pro-
totype is intended to be used in a one-shot process. After
running the scheduler the first time, if the user wants to
look at a different schedule resulting from minor changes to
the input data, they must re-run the scheduler. This process
could be described as the following sequence (1) Run sched-
uler, (2) Visualize schedule, (3) Change input data, (4) Re-
run scheduler, (5) Visualize results. As the prototype cannot
process previous plans, it has to recompute a schedule from
scratch which in the average case takes more time than mak-
ing changes to the current schedule and might completely
change the resulting schedule.

One objective is to give the user the ability to interact with
the scheduler (ideally through a graphical user interface) in
a way that would minimize the (a) running time and (b) in-
stability from one iteration to another. The goal is to arrive
at the following sequence: (1) Run scheduler, (2) Visualize
schedule (3) Change data and visualize the minimally local
impact immediately, (4) Accept or reject the schedule mod-
ification.

To achieve this objective requires designing an graphi-
cal user interface, considering local search algorithms, and
implementing efficient dependency analysis in the model to
avoid costly recomputation.

Related Work
There exists several languages built for specifying plan-
ning problems such as the Planning Domain Definition Lan-
guage (Gerevini and Long 2005), the New Domain Defini-
tion Language (NDDL) associated with the EUROPA plan-
ner (Barreiro et al. 2012), the Action Notation Modeling
Language ANML (Smith, Frank, and Cushing 2008), or
Linear Temporal Logic (LTL) and its more recent schedul-
ing extension (Luo et al. 2016). While their expressive
power might make it possible to express scheduling prob-
lems (most handle resources and some activity decompo-

sition) if needed, they are not designed for this purpose.
Their planning-centric approach builds the modeling around
the concepts of actions with their preconditions and post-
conditions and revolves around finding sequences of ac-
tions leading to a desired state. They do not explicitly pro-
vide operators for inserting activities at a specific frequency,
with applicability periods, or coexistence conditions. In our
scheduling setting, the goal is to provide a practical way for
the mission and science planners to express mostly activity
insertion goals in a condensed manner, possibly with prefer-
ences.

Past work in a setting closer to pure scheduling such
as ours can be found in APGEN (Maldague et al. 2014;
1998), in the adaptation of ASPEN for the ROSETTA mis-
sion (Chien et al. 2021), in the scheduling languages de-
signed for staff scheduling problem (Gärtner et al. 2011),
for scheduling space operations at the Beijing Aerospace
Control Center (Xing et al. 2016), or in coverage scheduling
with CLASP (Doubleday 2016; Yelamanchili et al. 2019;
Maillard, Chien, and Wells 2021) in which polygons associ-
ated with coverage constraints constitutes a specific form of
campaign. With regard to the modeling language, this pre-
vious work usually provide an imperative language to the
user. It results in goals being a collections of algorithms.
While a purely declarative approach is not possible in our
setting for operational aspects, we try to tend in this direc-
tion to increase modularity and readability of goals. We be-
lieve that Java-embedding, functional aspects of the syntax,
and a pleasant user interface are also a way of improving
the user experience during goal authoring. With regard to
scheduling aspects, while it would probably be possible to
translate the goals into a linear programming or constraint
satisfaction formalism, one of the main objective here is to
provide explainability features to the user which makes any
black-box solvers unsuited as decision-making needs to be
traced. Also, the particular aspects mixing discrete and con-
tinuous aspects, that can only be simulated, because non-
inversible, sometimes (e.g. attitude planning), and the large
size of problem instances, makes us lean towards schedul-
ing approaches that favor early instantiation/grounding and
fast computation such as greedy approaches rather than least
commitment approaches.

Conclusion

In this paper, we have presented a Java-embedded domain-
specific language designed to be used by mission and sci-
ence planners to author scheduling goals for the Europa
Clipper mission. This language has features inspired both
by imperative languages and propositional logic in an ef-
fort towards the definition of more declarative scheduling
goals. A companion user-interface has been developed and
several user sessions with mission and science planners have
demonstrated that having both best accommodates user pref-
erences and knowledge. A primary scheduling strategy has
been presented and several future directions for development
have been outlined, including mixed-initiative scheduling
and explainability.

References
Agrawal, J.; Yelamanchili, A.; and Chien, S. 2020. Using
explainable scheduling for the mars 2020 rover mission. In
ICAPS 2020 Workshop of Explainable AI Planning (XAIP).
Barreiro, J.; Boyce, M.; Do, M.; Frank, J.; Iatauro, M.;
Kichkaylo, T.; Morris, P.; Ong, J.; Remolina, E.; Smith, T.;
et al. 2012. Europa: A platform for ai planning, schedul-
ing, constraint programming, and optimization. 4th Interna-
tional Competition on Knowledge Engineering for Planning
and Scheduling (ICKEPS).
Basilio, E., and Di Pasquale, P. 2017. The advance multi-
mission operations system (ammos)-an introduction to the
multi-mission products and services used by 50+ nasa mis-
sions. In Interplanetary Small Satellite Conference.
Bayer, T.; Bittner, M.; Buffington, B.; Dubos, G.; Ferguson,
E.; Harris, I.; Jackson, M.; Lee, G.; Lewis, K.; Kastner, J.;
Morillo, R.; Perez, R.; Salami, M.; Signorelli, J.; Sindiy, O.;
Smith, B.; Soriano, M.; Kirby, K.; and Laslo, N. 2019. Eu-
ropa clipper mission: Preliminary design report. In 2019
IEEE Aerospace Conference, 1–24.
Chien, S. A.; Rabideau, G.; Tran, D.; Troesch, M.; Double-
day, J.; Nespoli, F.; Ayucar, M. P.; Sitja, M. C.; Vallat, C.;
Geiger, B.; Vallejo, F.; Andres, R.; Altobelly, N.; and Kuep-
pers, M. 2021. Activity-based scheduling of science cam-
paigns for the rosetta orbiter. Journal of Aerospace Informa-
tion Systems In Press.
Doubleday, J. R. 2016. Three petabytes or bust: Planning
science observations for nisar. In SPIE 9881.
Gerevini, A., and Long, D. 2005. Plan constraints and pref-
erences in pddl3. Technical report, Technical Report 2005-
08-07, Department of Electronics for Automation
Gärtner, J.; Musliu, N.; Schafhauser, W.; and Slany, W.
2011. Temple - a domain specific language for modeling
and solving staff scheduling problems. In 2011 IEEE Sym-
posium on Computational Intelligence in Scheduling (SCIS),
58–64.
Llopis, M.; Polanskey, C. A.; Lawler, C. R.; and Ortega,
C. 2019. The planning software behind the bright spots on
ceres: The challenges and successes of science opportunity
analyzer. In 2019 IEEE International Conference on Space
Mission Challenges for Information Technology (SMC-IT),
1–8. IEEE.
Luo, R.; Valenzano, R.; Li, Y.; Beck, J. C.; and McIlraith,
S. A. 2016. Using metric temporal logic to specify schedul-
ing problems. In Proceedings of the Fifteenth International
Conference on Principles of Knowledge Representation and
Reasoning, KR’16, 581–584. AAAI Press.
Maillard, A.; Chien, S. A.; and Wells, C. 2021. Planning the
coverage of planets under geometrical constraints. Journal
of Aerospace Information Systems 18:5:289–306.
Maldague, P.; Ko, A.; Page, D.; and Starbird, T. 1998. Ap-
gen: A multi-mission semi-automated planning tool. In First
international NASA workshop on planning and scheduling,
363–365.
Maldague, P. F.; Wissler, S. S.; Lenda, M. D.; and Finnerty,

D. F. 2014. Apgen scheduling: 15 years of experience in
planning automation. In SpaceOps 2014 Conference, 1809.
Pinover, K.; Ferguson, E.; Bindschadler, D.; and Schimmels,
K. 2020. The reference activity plan: Collaborative, agile
planning for nasa’s europa clipper mission. In 2020 IEEE
Aerospace Conference, 1–13.
Smith, D. E.; Frank, J.; and Cushing, W. 2008. The anml
language. In The ICAPS-08 Workshop on Knowledge Engi-
neering for Planning and Scheduling (KEPS), 31.
Xing, J.; Zhu, H.; Li, L.; and Zou, X. 2016. The unified
scheduling language designed for the space mission schedul-
ing platform. In 2016 IEEE Aerospace Conference, 1–7.
Yelamanchili, A.; Chien, S.; Moy, A.; Shao, E.; Trowbridge,
M.; Cawse-Nicholson, K.; Padams, J.; and Freeborn, D.
2019. Automated science scheduling for the ecostress mis-
sion. In International Workshop for Planning and Schedul-
ing for Space (IWPSS 2019), 204–211. Also appears at
ICAPS SPARK 2019.

Acknowledgments
The research was carried out at the Jet Propulsion Labo-
ratory, California Institute of Technology, under a contract
with the National Aeronautics and Space Administration
(80NM0018D0004). The cost information contained in this
document is of a budgetary and planning nature and is in-
tended for informational purposes only. It does not consti-
tute a commitment on the part of JPL and/or Caltech.

