
Concept Languages as Expert Input for Generalized Planning:
Preliminary Results

Rik de Graaff, Augusto B. Corrêa, Florian Pommerening
University of Basel, Switzerland

{rik.degraaff, augusto.blaascorrea, florian.pommerening}@unibas.ch

Abstract

Planning is an attractive approach to solving problems be-
cause of its generality and its ease of use. A domain expert
often has knowledge that could improve the performance of
such a solution but this knowledge may be vague or not di-
rectly actionable. For example, an expert could be aware that
a certain property is important but not have a good way of
using this knowledge to speed up the search for a solution. In
this paper we evaluate concept languages as a possible input
language for injecting expert domain knowledge into a plan-
ning system. We also explore mixed integer programming as
a way to use this knowledge to improve search efficiency and
to help the user find and refine useful domain knowledge.

Introduction
The oft-repeated maxim “physics, not advice” (McDermott
2000) states that the specification of a planning domain
should simply describe the physical properties of the domain
and refrain from encoding advice to the planner on how to
solve the tasks. This is sensible because the person speci-
fying the domain might have incorrect ideas about the best
solution strategies. It is a separation of concerns: specify-
ing a planning domain and solving it are different problems
requiring different expertise. For this reason planning algo-
rithms require no domain knowledge apart from a model of
the world.

Search algorithms, such as A* (Hart, Nilsson, and
Raphael 1968) and greedy best-first search (Doran and
Michie 1966), in combination with informative domain-
independent heuristics are considered the state of the art in
optimal and satisficing planning (Katz et al. 2018; Seipp and
Röger 2018). However, this “planning-as-heuristic-search”
(Bonet and Geffner 2001) paradigm usually cannot com-
pete with domain-specific algorithms precisely because of
their generality. Domain-independent heuristics by defini-
tion cannot include domain-specific knowledge. A domain
expert has such knowledge but might have no way to in-
corporate it into an algorithm. The knowledge can be vague
(e.g., “the number of blocks above a misplaced block is im-
portant”) or even misleading for a specific algorithm. In this
paper, we explore the middle ground between planning and
domain-specific solutions by allowing experts to specify do-
main knowledge in an iterative process.

We allow the user to insert advice for a planner in the
form of concepts. A concept is a formula in a description
logic that describes a set of objects that the expert consid-
ers important in this domain. The description is general in
the sense that a concept can be evaluated in any task of the
domain. Concepts can be treated as advice by incorporating
them in a heuristic function that is then used in the search.
Francès et al. (2019) defined generalized potential heuris-
tics based on such concepts in the area of generalized plan-
ning. These heuristics are represented as a weighted sum of
concept-based features. Once the features and weights are
fixed, the heuristic can be used in any task of the domain.
Francès et al. found that features often represent aspects that
have a clear meaning to humans and these heuristics can be
interpreted in natural language. They proposed a way to au-
tomatically discover useful features but this does not scale
to larger domains due to the vast search space of candidate
heuristics.

In this work, we explore how useful concept languages
are as a means to express expert knowledge of a domain.
Using the concepts in a generalized potential heuristic also
allows us to deal with vague or misleading knowledge, as the
user only specifies the concepts, while the system then finds
appropriate weights. An analogy to this is evaluating a chess
position, where the expert would specify that the number of
pawns and rooks is important and the system would then
figure out to value rooks 5 times higher than pawns.

We start from the same concept language used by Francès
et al. (2019) and introduce new extensions. We also use a
different way of learning the weights: their method tries to
find weights that give strong theoretical guarantees, which
might not exist in a practical domain. We instead look for
weights that approximate these guarantees as close as possi-
ble. If the features added by the expert are not sufficient to
find good weights, we present them with feedback to help
them analyze the problem and find missing features.

Classical Planning
We explain our work in the context of classical planning.
However, we only make light assumptions on the planning
model, so it should be easy to adapt our methods to a more
general setting. We discuss this in the last section.

The domain of a classical planning task is a tuple D =
〈P,A, C〉, where P is a set of predicates,A is a set of action

schemas, C is a set of constants. An action schema a[X] ∈ A
is represented as a set of parameters X , a precondition
pre(a[X]), an effect eff (a[X]), and a cost cost(a[X]) ∈
R≥0. The precondition pre(a[X]) is a first-order logical for-
mula over the predicates in P applied to X ∪ C, and the
effect eff (a[X]) is a conjunction over such predicates and
their negations.

A planning task Π in a domain D is a tuple 〈O, I,G〉,
where O is a set of objects, I is the initial state, and G is
the goal condition. A predicate P ∈ P applied to objects
in C ∪ O is an atom and a (partial) truth assignment to all
atoms is a (partial) state. The initial state I is a state and the
the goal condition G is a partial state. A state s with G ⊆ s
is a goal state. We denote the set of all states by S.

Action schemas a[X] ∈ A can be grounded by replac-
ing the parameters X in pre(a[X]) and eff (a[X]) of ac-
tion schema a with objects from O. The result of ground-
ing an action schema with is a (ground) action a with no
parameters and the same cost as the action schema. If the
precondition of an action is satisfied in a state, we say the
action is applicable. If an action a is applicable in a state
s then applying it leads to the successor state s[a] which
assigns all positive literals in eff (a) to true, all negative lit-
erals in eff (a) to false, and all remaining atoms to the value
they had in s. The set of successor states of a state s is
succ(s) = {s[a] | a is applicable in s}.

A sequence of actions 〈a1, . . . , an〉 is a path from s0 to
sn if there are states 〈s1, . . . , sn−1〉 where ai is applica-
ble in si−1 and si−1[ai] = si for all i ≤ n. Its cost is∑n
i=1 cost(ai). A plan is a path from the initial state to

any goal state. An optimal plan is a plan with minimal cost.
Reachable states are states to which a path from the initial
state exists and solvable states are states from which a path
to any goal state exists. We call a state alive if it is both solv-
able and reachable, but not a goal state.

A heuristic is a function h : S → R. The perfect heuristic
h∗ maps each state to the cost of an optimal plan. A gen-
eralized heuristic is a function that is defined for all states
of all tasks in a given domain. A heuristic h is descend-
ing on a state s if s has at least one successor s′ where
h(s′) ≤ h(s) − 1. The heuristic function h is dead-end
avoiding on a state s if every unsolvable successor of s has
a heuristic value greater than or equal to h(s). A heuristic
is descending and dead-end avoiding if it is descending and
dead-end avoiding on every alive state. A heuristic with this
property guides standard greedy algorithms directly to a goal
(Francès et al. 2019).

Concept Languages
Concept languages or description logics are a family of
logic-based representation languages, most of which are
more expressive than propositional logic but still decid-
able (Baader, Horrocks, and Sattler 2007). Concept lan-
guages deal with individuals; classes of individuals which
are called concepts; and binary relationships between indi-
viduals which are called roles. A concept language is de-
fined by which constructors for concepts and roles it al-
lows. Similar to Francès et al. (2019), we consider the stan-
dard language SOIQ with the added constructors of role-

value-map, role union and intersection. However, we also
extend the language used by Francès et al. (2019) with a
non-standard constructor to deal with higher-arity relations
between individuals.

Syntax and Semantics Concepts and roles are defined in-
ductively and are interpreted with a model ·M relative to
a universe of individuals ∆. A set of named individuals,
named concepts and named roles form the basis of the in-
ductive definition. The model ·M maps named individuals a
to individuals aM ∈ ∆, named concepts c to subsets of indi-
viduals cM ⊆ ∆, and named roles r to relations between ob-
jects rM ⊆ ∆2. The remaining concepts and roles are built
and interpreted as follows from existing concepts C,C ′,
roles R,R′, named individuals a1, . . . an, natural numbers
n, and comparison operators ∼ ∈ {=, >,<,≥,≤}:

>M = ∆,⊥M = ∅, (¬C)M = ∆\CM,

(C t C ′)M = CM ∪ C ′M, (C u C ′)M = CM ∩ C ′M,

(R tR′)M = RM ∪R′M, (R uR′)M = RM ∩R′M,
(∃R.C)M = {x | ∃y.(x, y) ∈ RM ∧ y ∈ CM},
(∀R.C)M = {x | ∀y.(x, y) ∈ RM → y ∈ CM},

{a1, . . . , an}M = {aM1 , .., aMn },

(R = R′)M = {x | (x, y) ∈ RM ↔ (x, y) ∈ R′M},
(R−1)M = {(x, y) | (y, x) ∈ RM},

R+M ={(x0, xn) | ∃x1, . . . xn−1.

(xi−1, xi) ∈ RM for all i ∈ {1, . . . , n}},

(R ◦R′)M = {(x, y) | ∃z.(x, z) ∈ RM ∧ (z, y) ∈ R′M}.
(∼ n R.C)M = {x | #{y | (x, y) ∈ RM ∧ y ∈ CM} ∼ n}.

For a more detailed description, we refer to the book by
Baader, Horrocks, and Sattler (2007). As an example, let
package be a named concept that is mapped to all pack-
ages in a logistics problem, and in be a role that is mapped
to the relation of which object is in which truck. Then, the
concept (package u ∃in.>) represents all packages loaded
in some truck. If, additionally, at is a role relating trucks
to locations and connected is a role encoding which loca-
tions are connected by a road, then ∀at.∃connected+.{A}
describes the set of all trucks that can drive to location
A. We can combine these two concepts so (package u
∃in.∀at.∃connected+.{A}) describes all packages that can
be delivered to location A.

Extensions
Next, we introduce new extensions to the concept language.
These extensions make the concept language more expres-
sive, at the cost of the computational guarantees for the lan-
guage SOIQ. However, in our work, we are only concerned
with evaluating concepts and roles in a finite model which
remains efficiently possible.

Higher-arity roles In our applications there might be re-
lations between objects that are not binary. Francès et al.

(2019) dealt with n-ary roles by replacing them with multi-
ple binary roles but as an input language for expert knowl-
edge, it is more natural to talk about such roles directly. We
thus allow named roles of any arity in our concept language,
where an n-ary role R is interpreted as RM ⊆ ∆n. The
above definitions all assume binary roles, so we introduce a
projection operator ·π̄(m) that projects away position m ≤ n
of an n-ary role R.

(Rπ̄(m))M ={(x1, . . . , xm−1, xm+1, . . . , xn)

| ∃xm.(x1, ..., xn) ∈ RM}.
Projection to a subset I of indices (denoted π(I)) can be
seen as syntactic sugar, that repeatedly projects away all in-
dices outside of I .

In addition to projecting roles to a lower arity, we allow
to restrict roles to entries where objects in a given position
m have to be in a given concept C. We call this operation
atomic selection:

(Rm∈C)M = {(x1, . . . , xn) ∈ RM | xm ∈ CM}.
We define general selection as syntactic sugar: if R
is an n-ary relation and C1, . . . , Cn are concepts, then
R[C1, . . . , Cn]M = ((· · · (R1∈C1) · · ·)n∈Cn)M. In our pre-
vious logistics example, if red is a concept containing all red
trucks, then in[package, red]π({1}) represents the set of all
packages in red trucks. As we can see in this example, unary
roles can be treated as concepts.

Quantifiers for Roles We also introduce the universal
quantifier and the existential quantifier as

(∀a ∈ C.R)M =
⋂

x∈CM

RM(a=x),

(∃a ∈ C.R)M =
⋃

x∈CM

RM(a=x),

where ·M(a=x) denotes the model which is identical to ·M
with the addition of the new named individual a such that
aM = x.

Concept Languages of Planning Tasks
We focus on planning tasks represented in the STRIPS frag-
ment of PDDL (McDermott 2000). Extending the technique
to a larger PDDL fragment would be straight-forward as we
only make light assumptions on representation of the states
and the goal. Like Francès et al. (2019) we define the con-
cept language of a planning domain 〈P,A, C〉 as the lan-
guage where the named individuals are C, and the named
concepts are the unary predicates in P . In contrast to them,
we do not replace higher-arity predicates inP by binary ones
but represent all of them explicitly as higher-arity named
roles. In a given task 〈O, I,G〉, we consider the set of indi-
viduals ∆ = O ∪ C in all states. For every state s we define
the model .M(s) with aM(s) = a for all named individuals
a, CM(s) = {x | s |= C(x)} for every named concept C,
and RM(s) = {(x1, . . . , xn) | s |= R(x1, . . . , xn)} for ev-
ery named roleR. The exception are nullary concepts where
we define RM(s) = ∆ if sM(R) and RM(s) = ∅ otherwise.

We also use goal concepts CG and goal roles RG for
all named concepts C and roles R. We define them slightly
more general than Francès et al. to enable their use in larger
PDDL fragments:

(CG)M(s) =
⋂

s′∈SG

CM(s′), (RG)M(s) =
⋂

s′∈SG

RM(s′).

Generalized Potential Heuristics
Francès et al. introduced generalized potential heuristics as
a weighted sum over features which map states to integers.

Definition 1 Let S be a set of states which are not neces-
sarily part of the same state space and F a set of features
f : S → Z. Let w : F → R be a weight function mapping
features to weights. The value of the potential heuristic with
features F and weights w on a state s ∈ S is

h(s) =
∑
f∈F

w(f) · f(s).

We use the cardinality and distance features defined by
them and add product and heuristic features as further ways
to express task-independent properties.

Definition 2 Let s be a state, C and C ′ be concepts, R a
role, and h a generalized heuristic.

• The value of the cardinality feature |C| in s is |CM(s)|.
• The value of the minimal distance feature dist(C,R,C ′)

in s is the smalles n such that there are x0, . . . xn with
x0 ∈ CM(s), xn ∈ C ′M(s) and (xi−1, xi) ∈ RM(s) for
all i ≤ n. If no such individuals x0, . . . xn exist, the value
is 0.

• The value of the heuristic feature fh in s is h(s).
• For two features f1 and f2, the value of the product fea-

ture f1 · f2 in s is f1(s) · f2(s).

Note that heuristic features allow to incorporate any other
heuristic into the mix which might already have good per-
formance on the domain. The remaining features can then
be used to mitigate weaknesses of the heuristic.

The product feature solves a problem that Francès et al.
pointed out: cardinality and distance features can only re-
turn values up to |∆| which means that generalized potential
heuristics over them are limited to values that are linear in
the number of objects in a task. With product features, we
can express arbitrarily high values.

Expressing Expert Knowledge
Our main contribution is a system that allows domain ex-
perts to express concept-based features that represent rele-
vant properties of the domain. The high level overview of
this system is illustrated in Figure 1. We explain the details
of this process below.

The expert does not need to be familiar with the internal of
the planning system they use to solve the problems. Instead,
they only need to know which aspects of the domain are im-
portant and have a working knowledge of the domain model
and description logics to a degree where they can express

add training
instances

add features

evaluate
features on

training
instances

find best
weights for

features

states with
slack?

report
difficult
states

and their
successors

heuristic
good enough?

stop

Tool

yes no

no

yes

Figure 1: Overview of the iterative process. Tasks inside the
box are performed by the tool, while tasks outside the box
are performed by the domain expert.

these aspects as features. The knowledge passed to the plan-
ner in this way should be thought of as hints (“This property
is interesting”) not directives (“You have to use this action”).

The concepts used in our features express sets of objects
with a certain property rather than the property itself but
features than map these sets to numbers. For example, in
a logistics domain, the number of undelivered packages is
relevant and could be expressed with a cardinality feature
|package u ¬(at = atG)|. We explicitly do not require the
expert to set any weights for these features, that is, we as-
sume the expert has an idea about what is important but does
not want to specify a full heuristic. Instead, we use a mixed
integer program (MIP) to find good weights for the features
that the expert specified. This process is described in the fol-
lowing section. It also leaves room for features that turn out
to be less useful than the expert thought or could even guide
the search in the wrong direction. The best weight for such
features might be 0 (disabling the feature) or even negative.

Coming up with good features is not an easy task, even
for someone familiar with the domain. In case the initial set
of features is not sufficient to work in all situations, our sys-
tem will detect this and present the user with a state where
the heuristic is not informative enough to pick a good suc-
cessor (we will describe this in more detail after discussing
the MIP). The expert can then analyze this situation and add
new concepts and features to the pool that cover this sit-
uation. This iterative process gives the MIP more choices
for finding a useful heuristic for the domain so the average
performance of the heuristic should improve over time. The

user can stop the process at any time and use the discovered
heuristic on all future tasks of the domain.

Francès et al. (2019) also learned weights for a general-
ized potential heuristic automatically. The difference is that
they systematically generated all features up to a given for-
mula size while we use a smaller pool of hand-crafted fea-
tures. While their approach is more general, it has issues
with scaling as a complex concept can only be considered if
the feature pool is large enough to contain all concepts of its
size. For example, although Francès et al. show a descending
generalized potential heuristic for the Logistics domain, the
features used were so complex that the systematic feature
generation could not scale up to it. Yet, these features rep-
resent very intuitive knowledge about the domain and it is
reasonable to expect that a user could come up with them by
themselves. In fact, Francès et al. came up with this heuris-
tic hand-crafting the features and testing it manually. This is
also the main goal of our system: To allow users to choose a
set of hand-crafted features in order to avoid the issues with
automatic feature generation and to test it by themselves. In
this way, we can use much larger concepts without increas-
ing the solving time significantly.

Learning Heuristics
Francès et al. used a MIP to learn weights for a set of fea-
tures such that the resulting potential heuristic is descending
and dead-end avoiding. If such a heuristic can be found, it
will guide a greedy search to a goal state without backtrack-
ing. However, in general such a heuristic might not exist for
a given domain. Here we prefer practical applicability in all
domains over strong guarantees in some, so instead of look-
ing for a descending and dead-end avoiding heuristic, we
approximate one. Our assumption is that a heuristic that is
descending in most states has a high rank correlation with
the perfect heuristic (Wilt and Ruml 2015) and thus guides a
search to a goal state quickly. Alternatively, we can skip the
step of approximating a heuristic that correlates with the per-
fect heuristic and approximate the perfect heuristic directly.

In both cases we start from a set of alive states S from
a domain D and a set of candidate features F for the same
domain. To find the set S, we completely expand the state
space of several small instances.

Approximating a descending and dead-end avoiding
heuristic Francès et al. (2019) use a MIP over variables
wf for every feature f ∈ F to describe the weight for
f . Their constraints enforce that the corresponding heuris-
tic is descending and dead-end avoiding, while their objec-
tive function minimizes the complexity of the selected fea-
tures. If no such heuristic exists, the MIP is infeasible. In our
case, we want the MIP to always find some heuristic but do
not care about the complexity of the selected features (the
assumption is that the amount of user-provided features is
small enough to use them all). We thus use slack variables
us,s′ , vs,s′ for every state s and every transition s→ s′ from
an alive state s to a state s′ ∈ succ(s). We then minimize
the total slack on all constraints. Apart from this, the MIP
is identical to the one used by Francès et al. (2019). We de-
note it byMslack (S,F). As a shorthand notation, we write

h(s) to represent
∑
f∈F wf ·f(s), where f(s) represents the

value of the feature f in the state s.

Minimize
∑

us,s′ +
∑

vs,s′ s.t.∨
s′∈succ(s)

h(s) + us,s′ ≥ h(s′) + 1 for all s ∈ S

h(s′) + vs,s′ ≥ h(s)

for all s ∈ S, s′ ∈ succ(s), s′ unsolvable

us,s′ ≥ 0 for all s ∈ S, s′ ∈ succ(s)

vs,s′ ≥ 0 for all s ∈ S, s′ ∈ succ(s), s′ unsolvable.
With a slack of 0, the first constraint ensures that the heuris-
tic is descending while the second ensures that it avoids
dead ends. By minimizing the total slackMslack (S,F) in-
tuitively computes the generalized potential heuristic which
is closest to being descending and dead-end avoiding using
all the features provided.

Approximating the perfect heuristic Instead of trying to
approximate a descending and dead-end avoiding heuristic,
we can also approximate the perfect heuristic h∗ which can
be easily computed on the small tasks we use to generate S.
Our heuristic only has to match h∗ along transitions from an
alive state to a solvable successor as long as all transitions
to unsolvable states are less attractive than a transition to a
solvable successor. We can obtain weights for such a heuris-
tic by solving the mixed integer programM∗(S,F) which
uses the same set of variables asMslack (S,F).

Minimize
∑
|us,s′ |+

∑
vs,s′ s.t.

h(s)− h(s′) + us,s′ = h∗(s)− h∗(s′)
for all s ∈ S, s′ ∈ succ(s), s′ is solvable

h(s′) + vs,s′ ≥ max
t∈succ(s)∪{s}

t solvable

h(t)

for all s ∈ S, s′ ∈ succ(s), s′ is unsolvable

vs,s′ ≥ 0 for all s ∈ S, s′ ∈ succ(s), s′ unsolvable
The first constraint encapsulates how well the heuristic ap-
proximates the perfect heuristic locally. A heuristic h which
fulfills these constraints with all us,s′ = 0 can only differ
the perfect heuristic by a constant on all states in S and their
solvable successors. The second constraint deals with un-
solvable successors of solvable states. Since the value of the
features, and thus the heuristic, can only be a finite number,
the heuristic cannot indicate an unsolvable state by an infi-
nite value. Instead, we strengthen the requirement for dead-
end avoiding heuristics and compare the value of the heuris-
tic for the unsolvable state to that for its predecessor and all
of its solvable siblings.

Neither of these two mixed integer programs is linear be-
cause they use disjunctions, maximizations and absolute val-
ues. However, both can be solved by modern MIP solvers af-
ter some rewriting as described by Francès et al. (2019). In
particular, M∗(S,F) can be rewritten as a linear program
without integer variables so it can be solved more efficiently.

In some domains, it might happen that the set S is too
large even when computed from very small instances. This

produces a very large MIP which takes considerably more
time to solve. To reduce this problem, we can randomly sam-
ple a number of states from S and use this sample to produce
the MIP. This strategy was also done by Francès et al. (2019)
to reduce the time needed to solve the MIP.

Improving the Heuristic Iteratively
When solvingMslack (S,F) andM∗(S,F), we can iden-
tify states which the heuristic is uninformed by checking the
slack variables with the highest values. We can present the
domain expert with these states and their successors as well
as the feature values and heuristic value for these states. This
can serve as a basis for the expert to identify which impor-
tant aspects of the domain are not adequately expressed by
the features they specified. They can then extendF with fea-
tures they expect to alleviate the problem.

In case the highest-valued slack variable is some us,s′ > 0
this means that the heuristic value does not sufficiently de-
crease along transitions starting from s. The state s is alive,
so there has to be an optimal plan for s. A good heuristic
should decrease along this plan (although this is not neces-
sary as the heuristic could decrease along a different plan as
well). The expert should then try to express the reason why
the successor of s on this plan is better than s in terms of a
concept-based feature.

Alternatively, if the highest-valued slack variable is some
vs,s′ > 0, the heuristic would mislead the search into a dead
end by not sufficiently separating the unsolvable state s′

from the solvable state s. In this case the expert should look
at the reason why the transition from s to s′ makes solving
the task impossible and express this with a concept-based
feature.

What results from these basic elements is an iterative
process. The domain expert starts out by expressing some
features F of the domain they expect are significant. They
can then solve one or both of the mixed integer programs
Mslack (S,F) andM∗(S,F) with S being the alive states
of a few small tasks of the domain. After refining F , the
expert can solve the mixed integer programs again with the
new set of features. Heuristic features can be added to ex-
ploit both human intuition about a domain and information
state of the art heuristics are good at detecting. The informa-
tion provided by both is automatically weighted and mixed
by the MIP finding appropriate weights. Using multiplica-
tion features it is also possible to multiply a heuristic with a
(possibly empty) concept cardinality and thus use the heuris-
tic only for states where it provides good estimates.

When the resulting heuristic captures everything in the
sample states S reasonably well, the expert can add addi-
tional tasks, expanding S. These steps can be repeated until
the expert is satisfied with the resulting heuristic or improv-
ing upon it becomes infeasible due to the size of the mixed
integer program.

Use Cases
Next, we illustrate how our proposed iterative process can
work in practice by discussing its use on three domains. To
do so, we implemented the overall workflow as a Python

tool. The user can give a domain and an initial set of features
to the tool. Features can be formulated in a Manchester-like
syntax1. The user then selects which MIP to solve to find
weights for the specified features. We use the Python API2

of CPLEX 12.10 for defining and solving the MIPs. To gen-
erate the states S used in the MIPs, the user also specifies a
set of small training tasks. We use a modified version of Fast
Downward 19.12 (Helmert 2006) to completely explore the
state space of these tasks and sample state from the state
spaces at a user-specified rate. Our version of Fast Down-
ward evaluates the features for each state and returns a list of
states together with the value of each feature in each state.
We had to modify the translation phase (Helmert 2009) of
Fast Downward to keep the static information in the finite-
domain representation. Otherwise, we would not be able to
evaluate concepts that refer to static predicates.

After the MIP finds an optimal solution (or reaches the
time limit) it verifies if there are any states where the asso-
ciate slack variables are not 0. If this is the case, it means that
the heuristic is not descending or perfect. The top 5 states
with highest value for their slack variables are displayed to
the user together with their successors. The user then can
add more features and repeat the process. Once the user is
satisfied with the heuristic, they can export it to a file and
use it with our modified version of Fast Downward for all
tasks in the domain. The source code of our tool is available
online (de Graaff 2020).

All heuristics were found on an Intel i5-7400 CPU with a
time limit of half an hour for CPLEX. If CPLEX exceeded
the time limit, one of the current best solutions was used.
We evaluated the quality of the final heuristic by using it in
a greedy search on a set of larger test tasks. This experiment
was run on Intel Xeon E5-2660 CPUs with a time limit of
5 minutes for each task. To judge the heuristic quality, we
measure the number of evaluations required by the greedy.
These numbers are usually dominated by larger tasks, so we
instead report an evaluation score between 0 (for not solving
the task) and 1 (for solving the task in a single evaluation)
where intermediate values are scaled logarithmically.

VisitAll
In the domain VisitAll, an agent has to visit every node of an
undirected graph. The agent can move along an edge of the
graph with a cost of one. As the graph is undirected, there are
no dead ends in the domain. We used the smallest VisitAll
task as the only training instance for this domain.

A first guess to what might be important in this do-
main is the number of unvisited nodes. We can express
this with the feature |¬visited| and use it to initialize our
tool. There are no descending heuristics with only this fea-
ture, so both of the MIPs find a solution with positive slack
values. The states with the highest slack have in common
that the agent is in a position where all neighboring nodes
are already visited. A good action to take in this situa-
tion is to move to a neighboring node in a way that re-
duces the distance to an unvisited node. The distance feature

1https://www.w3.org/TR/owl2-manchester-syntax/
2https://pypi.org/project/cplex/

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

FF Heuristic

C
on

ce
pt

H
eu

ri
st

ic

Figure 2: Evaluation scores of eager greedy search with con-
cept heuristic and the FF heuristic for VisitAll tasks.

dist(at-robot , connected ,¬visited) expresses this quantity
and can be added to the candidate pool.

After the second feature is added, both MIPs find a solu-
tion k|¬visited| + dist(at-robot , connected ,¬visited) for
some weight k. As discussed by Francès et al. (2019), this is
a descending heuristic for VisitAll if k is lower than the di-
ameter of the graph. Our tool is not able to determine this, as
adding larger state spaces to the training instances will only
produce a heuristic with a higher value for k. However, the
domain expert could notice this problem and add the feature
|>| · |¬visited|. This feature multiplies the number of all
nodes with the number of unvisited nodes, so it effectively
uses a sufficiently high weight for the first feature. The sum
of this feature and the distance feature (both weighted with
1) is a descending heuristic for all VisitAll tasks.

Even though this heuristic is descending and will not re-
quire backtracking in the search, it may be suboptimal and
thus produce suboptimal plans. We compare its evaluation
score with the evaluation score of the FF heuristic (Hoff-
mann and Nebel 2001) in Figure 2. The FF heuristic has no
access to domain-specific knowledge and shows a lower per-
formance as expected.

Logistics
The Logistics domain deals with packages which must be
delivered from one location to another. There are trucks
which can transport packages within cities and airplanes
which can transport packages from one city to another but
only between airports. Loading a package into or out of a
vehicle has a cost of one, as do flying an airplane and driv-
ing a truck.

As the state spaces of small Logistics tasks are already
too large, we had to use a sample of the state spaces for the
learning phase. The learning phase used 9 tasks of which
three had 2 packages and two each had 3, 4, and 5 pack-
ages. We then used all of the states from the tasks with 2
packages and 10%/5%/2% from the tasks 3/4/5 packages,
respectively. The Logistics domain is the only domain where
we had to use sampling to be able to learn a heuristic.

We used a concept that described all delivered packages
to initialize the procedure and then iteratively analyzed the

0 5 10

5

10

15

20

25

Number of Features

E
va

lu
at

io
n

Sc
or

e
Mslack w/ FF
M∗ w/ FF
Mslack

M∗

Figure 3: Evaluation scores of Logistics heuristics.

states where the heuristic required high slack. Similar to the
domain VisitAll, this process helped to identify new fea-
tures. The concepts we ended up with describe the situations
a package can be in: from being on the ground in the wrong
city to being on the way to the airport, in the plane, or in a
truck in the correct city. These concepts directly correspond
to the ones described by Francès et al. (2019) (P1–P12 in
their Table 1). It is worth pointing out that while Francès
et al. describe an automated framework to discover these
heuristics, it did not scale to the feature complexity required
for Logistics so these features are also hand-crafted in their
paper. Our tool adds support for this process and enables a
user to discover the heuristic feature by feature.

We also attempted to start with the FF heuristic as a
heuristic feature and use the reported states to add features
until we found a dead-end avoiding and descending heuris-
tic. We were unable to identify any set of features from
which such a heuristic could be constructed except those we
already mentioned above which are sufficiently expressive
even without the FF heuristic.

While working with this domain, we noticed that adding
features and thereby reducing the total slack does not always
result in a better heuristic. To investigate this, we evaluate
how the heuristic quality changes when adding features. Us-
ing the features we mentioned above, we measure the heuris-
tic quality when just using the highest-weighted feature, just
the two highest-weighted, and so on. For each set of fea-
tures we learned weights with both Mslack and M∗, once
using just the features and once including the heuristic fea-
ture hFF. The results are shown in Figure 3. We can clearly
see how well FF performs on this domain. Additional fea-
tures do not improve its performance significantly. For the
configurations without the FF heuristic feature we can see a
relatively steady increase in performance on average. That
is, adding a useful feature will generally improve the heuris-
tic. This is visible for bothMslack andM∗. However, both
models have cases where adding a feature harms the heuris-
tic performance. This is more visible with Mslack where
performance sharply drops when adding the second-to-last
feature. There seem to be weight functions with low total
slack that still guide the search in the wrong direction. Nei-
ther learning strategy dominates the other which suggests

that there is value in both MIP variants.

TERMES
The TERMES domain models a robot that must build struc-
tures larger than itself out of uniform blocks. The blocks can
only be placed on the floor or be stacked directly on top of
each other, and no overhangs are possible. This means that
the state of the construction area can be fully represented by
specifying the number of blocks at each space. The robot
can move from one space to a neighboring space as long as
the height difference is no larger than one block. The robot
can carry at most one block at a time. It can place or pick up
a block if the placed block is on the same height as the robot.
A specific location is an infinite depot, where the robot can
always pick up or deposit blocks.

To find a heuristic for TERMES, we started from the two
simple features and then added features iteratively based on
the reported states. The final heuristic we used has a total of
18 features added over 7 iterations:

1. Our initial set of features contains a feature counting
the number of spaces with correct height (|position u
(height = heightG)|) and a feature counting the num-
ber of spaces with missing blocks (|(∃too low .numb) u
has block |). In the second feature, the role too low is
again constructed from three named roles describing
height, goal height, and the predecessor function. If the
robot is holding a block (has block), then the feature eval-
uates to the number of spaces where the height is lower
than the goal, otherwise it is 0).3

2. We then added one feature to count the number of blocks
with height too low (∃too low .numb) and one feature
counting the number of blocks with height too high
(∃too high.numb).

3. In the next iteration, we added three new features. These
features count the number of spaces that are exactly one,
two, or three blocks too low compared to the goal. These
features mention specific cases because we do not know
how to express the number of missing blocks at a location
in a more general way. Hence, we encoded the specific
cases for the most common cases.

4. We added six features that have a similar interpretation as
the ones added in the previous iteration. These count the
number of extra blocks or missing blocks compared to the
maximal height a tower may require (either its goal height
or the height it may require as a “ladder” to reach another
tower).

5. We then added two distance features. The first feature en-
codes the idea that a robot carrying a block should move
to a space where a block still needs to be placed. The
second feature encodes that a robot not carrying a block
should move a space where a block should be removed.

6. The next feature counts the number of towers which are
the wrong height and cannot currently be reached by the

3We use the fact that nullary atoms have intepretation ∆ when
true in a state, as has block is a nullary predicate in TERMES.

Number of Features

Method 2 4 7 13 15 16 18

Blind 0.05
Slack 4.83 1.03 0.00 0.31 0.00 0.00 0.00
h∗ 5.11 1.92 3.75 0.37 0.00 0.00 0.00

FF 9.58
FF-slack 8.20 9.23 10.72 4.36 4.46 3.65 2.70
FF-h∗ 8.99 8.74 9.92 7.95 7.41 4.64 3.64

Table 1: Evaluation scores of TERMES heuristics. For each
method, the best evaluation score is highlighted.

robot. This should discourage the search from exploring
such situations.

7. The last two features count the number of towers where a
block should be added or removed and where a neighbor-
ing tower of the appropriate height to remove or add the
block exists.

The training set used contained the four smallest TER-
MES tasks used in the IPC 2018. These tasks had a max-
imum height of three and, because of that, we encoded
the features up to three extra/missing blocks from the goal
height.

Table 1 shows the evaluation score of all methods at each
iteration when we added new features. While adding some
features allows a significant improvement over blind search
and a modest improvement over the FF heuristic, adding
more eventually diminishes the performance of all methods.
The methods using FF as a heuristic feature become worse
than the FF heuristic itself. The one without the heuristic fea-
ture become worse than a blind search, not solving a single
task within the time limit. In both cases, the heuristic found
by Mslack deteriorates quicker than the one found by M∗.
Our assumption that the discovered weights would disable a
misleading feature turned out to be false in this case.

One of the reasons for this behavior is because our train-
ing set is not representative enough. In our training in-
stances, the final action of any plan is never to place a block.
This adds bias to the learning and affects the performance
on heuristics that do not follow this structure, leading to an
uninformed heuristic in tasks that are not represented in the
training set.

BothMslack andM∗ perform worse when adding more
features beyond a certain point. This suggests that they either
do not approximate the right kind of heuristic, or that the ap-
proximation is not useful to improve performance. Wilt and
Ruml (2016) showed that simply approximating h∗ is not
a guarantee for improved performance in sub-optimal plan-
ning, even if it is approximated very closely. In fact, for both
MIP methods, the total slack value did generally decrease
with more features, but in both cases there is still consider-
able room for improvement. This is shown in Figure 4. Af-
ter we added the 18th feature, CPLEX also reached the 30
minutes time limit for all configurations except forMslack

without the FF heuristic feature.

0 5 10 15
0

10,000

20,000

30,000

Number of Features

Sl
ac

k

Mslack

M∗

Figure 4: Total slack value of TERMES heuristics found by
Mslack andM∗.

Overall, the TERMES domain is much more challenging
than the previous two. It shows that the choice of training
instances plays an important role in the learning step. A way
to improve performance could be to generate the training
tasks in a more targeted way.

Conclusion and Future Work
Our main contribution is a tool which allows a domain
expert without expertise in automated planning to specify
knowledge in the form of concept-based features. These fea-
tures are then used to learn a generalized potential heuristic
for the domain in question. The user does not need to spec-
ify a weight function or relationship between the features,
as the learning process is automated and only depends on a
set of input features and training instances. Concept-based
features have the advantage of being interpretable and were
already successfully used in generalized planning (Francès
et al. 2019). We extended this language so higher-arity pred-
icates do not have to be compiled away and the domain ex-
pert can use them in their natural form.

As an initial evaluation of the approach we tried the tool
on three domains. The results on domains that have simple
solution strategies like VisitAll and Logistics are encourag-
ing. In those cases we saw that the reported states help to
identify weak points in the feature pool and fix them by
adding new features. In a more complex domain like TER-
MES, we could not replicate this and saw that there are cases
were adding a feature harms the heuristic.

One potential way to make more of the hand-crafted set
of features is to augment it with systematically generated
features as used by Francès et al. (2019). As an example, in
the VisitAll domain this could have resulted in the system
discovering that the multiplication of the number of nodes
and the distance to the nearest unvisited node is useful be-
fore the user did. Additionally, there are many possibilities
to improve the learning part of this system. We saw that
solving the MIP sometimes became the bottleneck of this
system. A different relaxation of the property we are try-
ing to learn might speed up the process or learn more use-
ful heuristics from the same data. Rovner (2020) presents a
MIP based on the Goal Distance Rank Correlation (Wilt and
Ruml 2016) in the setting of potential heuristics for classi-

cal planning which would be an interesting choice. Alterna-
tively, one could attempt to learn a heuristic which explic-
itly maximizes the Goal Distance Rank Correlation using a
neural network. The downside to this approach would be a
significant loss of the explainability of the heuristic.

Although we focused on classical planning, our tool could
be extended to other fragments of planning. Our methods
can deal with any planning fragments that use a first-order
factored representation and that can be solved with explicit
state-space search. For example, it should be possible to
adapt the method to probabilistic planning (e.g., Trevizan,
Thiébaux, and Haslum 2017), temporal planning (e.g., Fox
and Long 2003), FOND planning (e.g., Erol, Hendler, and
Nau 1994), and lifted planning (e.g., Corrêa et al. 2020).
However, it has not yet been tested if generalized potential
heuristics are effective in these areas.

Acknowledgments
This work was supported by the Swiss National Science
Foundation (SNSF) as part of the project “Certified Correct-
ness and Guaranteed Performance for Domain-Independent
Planning” (CCGP-Plan). Moreover, this research was par-
tially supported by TAILOR, a project funded by the EU
Horizon 2020 research and innovation programme under
grant agreement no. 952215. We thank Malte Helmert for
his input on an earlier version of this work.

References
Baader, F.; Horrocks, I.; and Sattler, U. 2007. Description
Logics. In van Harmelen, F.; Lifschitz, V.; and Porter, B.,
eds., Handbook of Knowledge Representation, chapter 3,
135–180. Elsevier.

Bonet, B.; and Geffner, H. 2001. Planning as Heuristic
Search. Artificial Intelligence 129(1): 5–33.

Corrêa, A. B.; Pommerening, F.; Helmert, M.; and Francès,
G. 2020. Lifted Successor Generation using Query Op-
timization Techniques. In Beck, J. C.; Karpas, E.; and
Sohrabi, S., eds., Proceedings of the Thirtieth International
Conference on Automated Planning and Scheduling (ICAPS
2020), 80–89. AAAI Press.

de Graaff, R. 2020. Downward Guide. https://doi.org/10.
5281/zenodo.3900929.

Doran, J. E.; and Michie, D. 1966. Experiments with the
Graph Traverser program. Proceedings of the Royal Society
A 294: 235–259.

Erol, K.; Hendler, J. A.; and Nau, D. S. 1994. HTN Plan-
ning: Complexity and Expressivity. In Proceedings of the
Twelfth National Conference on Artificial Intelligence (AAAI
1994), 1123–1128. AAAI Press.

Fox, M.; and Long, D. 2003. PDDL2.1: An Extension to
PDDL for Expressing Temporal Planning Domains. Journal
of Artificial Intelligence Research 20: 61–124.

Francès, G.; Corrêa, A. B.; Geissmann, C.; and Pommeren-
ing, F. 2019. Generalized Potential Heuristics for Classical

Planning. In Kraus, S., ed., Proceedings of the 28th Inter-
national Joint Conference on Artificial Intelligence (IJCAI
2019), 5554–5561. IJCAI.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A For-
mal Basis for the Heuristic Determination of Minimum Cost
Paths. IEEE Transactions on Systems Science and Cyber-
netics 4(2): 100–107.
Helmert, M. 2006. The Fast Downward Planning System.
Journal of Artificial Intelligence Research 26: 191–246.
Helmert, M. 2009. Concise Finite-Domain Representations
for PDDL Planning Tasks. Artificial Intelligence 173: 503–
535.
Hoffmann, J.; and Nebel, B. 2001. The FF Planning System:
Fast Plan Generation Through Heuristic Search. Journal of
Artificial Intelligence Research 14: 253–302.
Katz, M.; Sohrabi, S.; Samulowitz, H.; and Sievers, S. 2018.
Delfi: Online Planner Selection for Cost-Optimal Planning.
In Ninth International Planning Competition (IPC-9): plan-
ner abstracts, 57–64.
McDermott, D. 2000. The 1998 AI Planning Systems Com-
petition. AI Magazine 21(2): 35–55.
Rovner, A. 2020. Potential Heuristics for Satisficing Plan-
ning. Master’s thesis, University of Basel.
Seipp, J.; and Röger, G. 2018. Fast Downward Stone Soup
2018. In Ninth International Planning Competition (IPC-9):
planner abstracts, 80–82.
Trevizan, F. W.; Thiébaux, S.; and Haslum, P. 2017. Occupa-
tion Measure Heuristics for Probabilistic Planning. In Bar-
bulescu, L.; Frank, J.; Mausam; and Smith, S. F., eds., Pro-
ceedings of the Twenty-Seventh International Conference on
Automated Planning and Scheduling (ICAPS 2017), 306–
315. AAAI Press.
Wilt, C.; and Ruml, W. 2015. Building a Heuristic for
Greedy Search. In Lelis, L.; and Stern, R., eds., Proceedings
of the Eighth Annual Symposium on Combinatorial Search
(SoCS 2015), 131–139. AAAI Press.
Wilt, C.; and Ruml, W. 2016. Effective Heuristics for Sub-
optimal Best-First Search. Journal of Artificial Intelligence
Research 57: 273–306.

