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Abstract

Several approaches have been developed to answer specific
questions that a user may have about an AI system that can
plan and act. However, the problems of identifying which
questions to ask and that of computing a user-interpretable
symbolic description of the overall capabilities of the sys-
tem have remained largely unaddressed. This paper presents
an approach for addressing these problems by learning user-
interpretable symbolic descriptions of the limits and capabil-
ities of a black-box AI system using low-level simulators.
It uses a hierarchical active querying paradigm to generate
questions and to learn a user-interpretable model of the AI
system based on its responses. In contrast to prior work, we
consider settings where imprecision of the user’s conceptual
vocabulary precludes a direct expression of the agent’s capa-
bilities. Furthermore, our approach does not require assump-
tions about the internal design of the target AI system or about
the methods that it may use to compute or learn task solu-
tions. Empirical evaluation on several game-based simulator
domains shows that this approach can efficiently learn sym-
bolic models of AI systems that use a deterministic black-box
policy in fully observable scenarios.

1 Introduction
AI systems are rapidly developing to an extent where they

can be expected to be used by non-experts who may not un-
derstand how they work or what they can and cannot do.
Ongoing research on the topic focuses on the significant
problem of how to answer such a user’s questions about the
system’s behavior (Anjomshoae et al. 2019; Barredo Arrieta
et al. 2020; Chakraborti et al. 2017; Dhurandhar et al. 2018).
However, most non-experts hesitate to ask questions about
new tools and quite often do not know which questions to
ask in order to assess the safe limits and capabilities of an
AI system. This problem is aggravated in situations where
an AI system can carry out planning, or sequential decision
making, and the user’s conceptual vocabulary may not be
expressive enough to express rich simulator-based models
of AI systems and the solution policies they may use. Lack
of understanding of the limits of an imperfect system can
result in unproductive usage or, in the worst-case, serious
accidents (Randazzo 2018). This in turn limits the adoption
and productivity of the AI systems.

This work presents a new approach for learning user-
understandable expressions of the capabilities of a black-box

AI system. This target AI system may use arbitrary internal
models, representations and processes for computing solu-
tions to user-assigned tasks. This paradigm captures a wide
variety of AI agents, including ATARI-game playing agents
that may use a deep-learnedQ function for selecting actions,
as well as agents that carry out variants of automated plan-
ning.

Consider the case of an autonomous car. A non-expert
may not even know that they need to ask about why the car
is driving so close to the curb before it is too late. While
the developer of the system may be willing to share precise
details about the car’s steering policies (perhaps along with
a simulator), non-experts would be hard-pressed to know in
advance that that is an aspect they should be worrying about.
Deploying such AI systems would be easier if a user could
just indicate terms that they understand (e.g., qualitative no-
tions of distance, collisions, and accelerations) and get agent
models of the form “if you ask the car to park when the curb
is too low it might skirt the curb”. In this paper we assume
that the user’s concept vocabulary is provided as input, as
that problem is orthogonal to the focus of this paper and can
be addressed independently.

The most closely related orthogonal research has looked
at the problems of learning high-level symbolic models
of AI systems using either data from observations or us-
ing interventions. For instance, Konidaris, Kaelbling, and
Lozano-Perez (2018) assume access to predefined options
and learn the high-level symbols that describe those options
at the high-level. However, the learned symbols are not di-
rectly interpretable and the authors assign meanings to them
based on which states and actions they appear in and in
what form. Verma, Marpally, and Srivastava (2021) learn
user-interpretable models of the AI system using query-
answering, but they make the strong assumption that the
user’s vocabulary is precise enough to distinguish between
any two states in a high fidelity simulator. Furthermore, their
work assumes that the user and the AI system reason at the
same level of abstraction. These assumptions make prior ap-
proaches difficult to use in settings where the AI system may
use a more detailed model of the environment (e.g., a physics
simulator) than the conceptual scope of the user. Another
major difference of this paper with prior work is that un-
like prior work, the AI system “actions” that our approach
learns are not predefined, and in general, tend to be at a



much higher level of abstraction than the ones that the AI
system uses. E.g., our system may learn and inform the user
about actions that can be described at the level of their con-
ceptual vocabulary such as killing a monster in an ATARI
game or taking a right turn while the target AI system’s true
actions may be keystrokes or motor control commands. In
this way, the action representation that is learned is specific
to the given user. A greater discussion of the related work
can be found in Sec.5.

As a starting point, we begin by assuming determinism
and full observability on part of the AI system. We show the
working of this approach using the agents based on the Gen-
eral Video Game Artificial Intelligence (GVGAI) frame-
work (Perez-Liebana et al. 2016, 2019).

The rest of this paper is organized as follows. The next
section presents some background terminology used in this
paper. Section 3 introduces symbol description learning
problem and explains our approach to solve it; Section 4
explains the empirical evaluation setup and analyzes the re-
sults; Section 5 discusses the relevant literature; and Section
6 highlights our main conclusions.

2 Preliminaries
We assume the AI system (“agent” henceforth) has a deter-
ministic black-box policy corresponding to a decision pro-
cess defined as a 5-tuple 〈S,A, T,R,G〉, where S is the
state space,A is the set of actions that the agent can execute,
T : S×A→ S is the transition function, R : S×A→ R is
the set of rewards associated with each valid transition (R is
the set of real numbers), and G is the set of goal states that
the agent is trying to reach. The black-box deterministic pol-
icy Π : S → A maps each state to the action that the agent
should execute in that state to reach one of the goal states
g ∈ G.

This policy need not be optimal, but should be stationary
for our approach to learn its correct symbolic description.
We now see the descriptions that we will use to represent
the agent using this black-box policy.

2.1 Symbolic Descriptions
We assume that the user wishes to estimate the agent’s
internal model as a symbolic description similar to the
ones learned by Kansky et al. (2017), James, Rosman, and
Konidaris (2020), etc. Such descriptions can be easily in-
terpreted with statements such as “under situations where
X hold, if the agent executes actions a1, . . . , ak it would
result in Y ”, where X and Y can be expressed using the
user-provided concepts. We formally define such symbolic
descriptions as follows:

Definition 1. A symbolic description is represented as a
pair M = 〈P̃ , Ã〉, where P̃ = {p̃1, . . . , p̃n} is the finite
set of predicates; Ã = {ã1, . . . , ãk} is a finite set of ac-
tions (operators). Each action ãj ∈ Ã is represented as a
tuple 〈pre(ãj), eff(ãj)〉, where pre(ãj) represents the set of
predicate atoms that must be true in a state where ãj can
be applied, eff(ãj) is the set of positive or negative predicate
atoms that will change to true or false respectively as a result
of execution of the action ãj .

Here, each predicate could be absent, positive or negative
in the precondition and effects of each action, and cannot be
positive (or negative) in both preconditions and effect simul-
taneously. Such descriptions are referred to as STRIPS-like
models (Fikes and Nilsson 1971). We call such models in-
terpretable as they help the user understand what the agent
will do in a certain situation, and what the limits and capa-
bilities of the agent are. E.g., such a description in an ATARI
game Zelda could indicate that the player must kill all mon-
sters to finish the game, or that the player must be adjacent
to a monster to kill it. This is different from the previous
attempts for defining interpretability (Barceló et al. 2020;
Lipton 2018; Poursabzi-Sangdeh et al. 2021) as those def-
initions focus only on explaining the representation of the
structure learned by the agent, and hence do not explain the
agent’s working in terms that the user can understand.

As mentioned earlier, our approach supports user’s vocab-
ulary that is not precise enough to express all the simulator
states. Hence, we use abstraction to model the relationship
between the user’s concepts and the the agent’s state space.

2.2 Abstraction
We now define the notion of abstraction used in this work.
Several approaches have explored the use of abstraction in
planning (Bäckström and Jonsson 2013; Giunchiglia and
Walsh 1992; Helmert et al. 2007; Konidaris 2019; Sacerdoti
1974; Srivastava, Russell, and Pinto 2016). We refer to S̃
as the set of high-level or abstract states, and S as the set
of low-level or concrete states. We define abstraction as in
(Srivastava, Russell, and Pinto 2016):
Definition 2. Let S and S̃ be sets such that |S̃| � |S|. An
abstraction from S to S̃ is defined by a surjective function
f : S → S̃. For any s̃ ∈ S̃, the concretization function
γf (s̃) = {s ∈ S : f(s) = s̃} denotes the set of states
represented by the abstract state s̃.

Following this notion, we use ˜ whenever we refer to a
state, a predicate, or an action pertaining to the abstract state
space. The abstractions we use in this work are forall-exists
abstraction (Srivastava, Russell, and Pinto 2016) which are
formally defined as follows:
Definition 3. An abstraction is a forall-exists abstraction iff
for every s̃′ ∈ ã(s̃), for every s ∈ s̃, there exists a s′ ∈ a(s)
such that s′ ∈ s̃′.

When we learn the symbolic description M̃∗ of the AI
system having a policy Π, the actions in M̃∗ end up being
temporal abstractions of the actions that the AI system can
execute. In the context of this work, temporal abstraction is
an abstract state transition, i.e., it is a transition from one
high-level state to another such that there are multiple low-
level transitions corresponding to it.

3 Learning Symbolic Descriptions
We assume that the input AI system is an autonomous

agent with access to a simulator S. The simulator S is de-
fined as a 3-tuple 〈S,A, T 〉, where S is the state space, A
is the set of possible actions, and T is the transition func-
tion. We assume that the user understands certain concepts,
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Figure 1: The symbolic description learner that uses the user’s preferred vocabulary, generates the user-level query, converts it
to the agent-level query, and based on its responses returns a user-interpretable symbolic description of the agent’s capabilities.

which we model as predicates. These concepts may not be
sufficient to discern all dynamic processes captured in the
simulator. E.g., the user may be unable to distinguish be-
tween two distinct simulator states. Hence, there is a discrep-
ancy between what the user and the agent can express. Fig.1
presents an overview of the approach, the internal compo-
nents of which are described in this section.

Let the set of predicates that the user understands be P̃ ,
and the set of states expressible using these predicates be
S̃. Since the predicates P̃ may not be enough to express all
the states in S, it is possible that more than one state in S
corresponds to a single state in S̃. This relationship can be
modeled as an abstraction where S̃ represents the high-level
or abstract states, and S represents the low-level or con-
crete states. This can be explained using an example from
the Zelda domain shown in Fig. 2. Here the simulator state
expresses pixel level details of the domain, whereas the state
in the user’s vocabulary can express only some high-level
concepts.

In this work, we assume that the abstraction from S to
S̃ is a forall-exists abstraction and all low-level concrete
states that map to the same high-level abstract state are
strongly connected through low-level actions. This ensures
determinism in the transition system at the high-level that
results from the abstraction. Now, we formally define what
we mean by a symbolic description learning problem:

Definition 4. A symbolic description learning problem is a
3-tuple 〈P̃ ,A,S〉 whose objective is to learn the symbolic
description M̃∗ of the agent A, using a simulator S, given
the set of user interpretable predicates P̃ .

This is similar to the agent interrogation task (Verma,
Marpally, and Srivastava 2021) but it made major assump-
tions that the user’s concept vocabulary is precise enough
to discern all distinct simulator states and that the user is
interested in low-level agent actions. These are significant
limitations as non-experts would be hard-pressed to have
such a precise conceptual vocabulary. E.g., a large number of
ATARI game states may be understood as “being in a room
with a monster”. Furthermore, describing the effect of low-
est level of agent actions like keystrokes does not help a user
understand the agent’s behavior.

The symbolic description M̃∗ = 〈P̃ , Ã〉 that we aim to
learn consists of user interpretable predicates P̃ , and the de-
scriptions of agent’s actions in terms of P̃ . One major prob-
lem that we solve is to generate a list of actions Ã that can be
described using P̃ . This is discussed in detail in Sec.3.1.1.

Another key problem we solve in our approach is to fa-
cilitate the interaction between the user and the agent even
when they are at different levels of abstractions. We do this
by using an active hierarchical query answering approach.

Formally, a query is a function that maps an agent to a re-
sponse. Our algorithm poses the queries to the agent that re-
sponds to them using the simulator. The algorithm uses a hi-
erarchical process by first generating the queries in the user’s
vocabulary – termed as user-level queries– and then refin-
ing them to the agent level – termed as agent-level queries.
These are formally defined as:

Definition 5. A user-level query %̃ is a function that maps an
agent A to a response θ̃, and is parameterized by a state s̃I ,
and a plan π̃ = 〈ã1, . . . , ãN 〉, where s̃I is a high-level state
(represented in the user’s vocabulary P̃ ) in which the agent
should start to execute the sequence of actions π̃, and ãi ∈ Ã
are the agent actions represented in the user’s vocabulary.
The response θ̃ to such query is a tuple 〈l, s̃F 〉, where l is
the length of the plan π̃ that the agent could successfully
execute, and s̃F is the state the agent was in after executing
the last successful action.

Definition 6. An agent-level query % is a function that maps
an agent A to a response θ, and is parameterized by states
sI , sG ∈ S, where S is the state space of the agent. The
response θ to such a query is a boolean variable which is
> if the agent can reach state sG from state sI , and is ⊥
otherwise.

3.1 Learning Symbolic Descriptions
To solve the symbolic description learning problem, we
present an approach that iteratively queries an agent and
learns the correct symbolic description based on the AI sys-
tem’s responses. A high-level description of the approach is
shown in Algorithm1.

The algorithm takes as input the user interpretable pred-
icates P̃ , the agent A, and the simulator S. First, it col-
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W, A, S, D, E
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.

Figure 2: States and actions represented in possible simulator and user vocabularies for Zelda.

Algorithm 1 Symbolic Description Learning Algorithm

Require: predicates P̃ , agent A, simulator S
1: O ← generate observations(A,S)
2: Ã← generate HLAs(O)

3: Set M̃∗ = φ, L̃← {pre, eff}
4: for each 〈L̃, Ã, P̃ 〉 do
5: Generate M+,M−,M∅ by setting P̃ in Ã at L̃ to

+,−, and ∅ in M̃∗

6: for each pair M1,M2 in {M+,M−,M∅} do
7: %̃← generate query(M1,M2)

//%̃ is of the form 〈s̃0, ã1, ã2, . . . , ãk〉
8: s0 ← refine state(s̃0)
9: for i in range [1, k] do

10: Set s̃i by applying ãi in state s̃i−1

11: si ← concretize state s̃i
12: end for
13: for i in range [0, k − 1] do
14: %← 〈si, si+1〉
15: θ ← ask agent(%,A,S)
16: if θ = ⊥ then
17: θ̃ ← 〈i, s̃i〉
18: end if
19: end for
20: θ̃ ← 〈k, s̃k〉
21: M̃∗ ← consistent model(θ̃,M1,M2)
22: end for
23: end for
24: return M̃∗

Query
Refinement

Response
Interpretation

lects a set of low-level observation traces O from the agent
(line 1), generated by the agent in the simulator perform-
ing some randomly generated task using its policy. These
observations have grounded transitions and appear in the
form 〈s0, s1, . . . , sn〉, and are used to generate the partial
action descriptions Ã in user vocabulary (line 2). This pro-
cess is described in Sec.3.1.1. The algorithm then initializes
the variable for storing the symbolic description M̃∗ to an
empty model, and the variable L̃ to keep track of the loca-
tions where a predicate can be added to an action – precon-
dition and effect (line 3).

Then the algorithm iteratively determines how each high-
level predicate P̃ appears in an action Ã, in the precon-
dition and the effect (line 4). To achieve this, it generates
three models M+,M−, and M∅ by setting P̃ in Ã at L̃ to

+,−, and ∅ in M̃∗ (line 5). Setting a predicate in an ac-
tion as + or − in a precondition (or effect) means additng
it as a positive or negative precondition (or effect). Setting
it to ∅ means it does not appear in precondition (or effect).
Then the algorithm picks two of these models at a time (line
6) and generates an user-level query %̃ that can distinguish
between the two models similar to the query generation by
Verma, Marpally, and Srivastava (2021) (line 7). These user-
level queries cannot be posed directly to the agent, as the
user and simulator vocabularies are not the same. Hence,
these user-level queries are converted to one or more agent-
level queries using the query refinement process (lines 8-14).
Then the algorithm uses a response interpretation process
to collect the responses of all agent-level queries that cor-
respond to the same user-level query, and process them to
generate a single user-level response corresponding to each
user-level query (lines 15-20). The query refinement and in-
terpretation processes are described in detail in Sec.3.1.2.

Finally, the algorithm finds the model consistent with the
agent response as in (Verma, Marpally, and Srivastava 2021)
(line 21). This includes asking the same query to the two
models and checking which model’s response conforms to
that of the agent. This process is repeated until the algorithm
finds how each predicate in P̃ appears in each action in Ã,
in the precondition and the effect.

3.1.1 Generating a High-Level Action Vocabulary
This component corresponds to line 2 of the algorithm. As
mentioned earlier, the set of actions in the user vocabulary
are not part of the input, hence the algorithm learns the set of
possible high-level actions Ã based on a set of input observa-
tions. To generate the set of high-level actions, we use tem-
poral abstraction. Hence, we define high-level actions are
the temporal abstractions of low-level actions that change
the high-level state. We call these actions high-level actions
(HLAs), and they are generated using the generate HLAs(O)
procedure. The generate HLAs(O) procedure converts an in-
put set of low-level observations O generated by abstracting
the states (forall-exists abstractions), and noting any abstract
state change as a unique high-level action.

We also store the states before and after executing these
actions as possible set of precondition and effects. We then
create sets of actions that cause similar state transition. Then
similar to Stern and Juba (2017), for each of these sets, we
create a possible set of preconditions by taking intersection



of the predicates that were true in the states where these ac-
tions were executed. Similarly, we create possible effects
using states after the actions were executed. This gives us
partial action descriptions of these high-level actions.

Lemma 1. The set of high-level actions Ã learned using
generate HLAs(O) procedure are temporal abstractions of
low-level agent actions A.

Proof (Sketch). High level actions Ã are learned by per-
forming forall-exists abstraction on the concrete low level
states. Whenever the abstract state changes in a transition, it
is considered as a high-level action. Assume the transition
at high-level corresponding to the action ãi be s̃1 → s̃2.
Now, according to the abstraction framework defined in
Sec. 2.2, all states that are concretization of the same state
are strongly connected through low-level actions. Hence, the
action ãi is equivalent to temporal abstraction of multiple
actions causing transitions within concretizations of s̃1 fol-
lowed by a low-level action causing transition between any
one of the concretization of s̃1 and any one of the concretiza-
tion of s̃2.

3.1.2 Query Refinement and Response
Interpretation Process

Query refinement corresponds to lines 8-14 of the response
generation algorithm. It converts a user-level query %̃ to a
set of agent-level queries that are posed to the agent. A
query %̃ can be represented as a trace 〈s̃0, ã1, ã2, . . . , ãN 〉,
where the initial state s̃I = s̃0 and the plan π̃ =
〈ã1, ã2, . . . , ãN 〉. The first step is to convert the trace to the
form 〈s̃0, ã1, s̃1, ã2, s̃2 . . . , ãk, s̃N 〉 using the partial action
descriptions Ã learned earlier from the observations (line
2). Each of the high-level states are then concretized to the
low-level states. The resulting consecutive low-level states
are paired in the form 〈si, si+1〉, where i ranges from 0 to
N−1. These pairs can be directly used as agent-level queries
posed to the agent sequentially.

Response Interpretation corresponds to lines 15-20 of the
response generation algorithm. The pairs of states 〈si, si+1〉
are given sequentially to the agent and the agent responds if
it can reach from state si to si+1 using its internal policy. If
the agent responds true for all such pairs, then it shows that
the agent can execute the high-level plan successfully, and
the final high-level state along with the plan length is set as
a response θ̃ (line 20). However, if the agent fails to reach
a state si+1 from the state si, then it is treated as a failure
to execute action ãi in state s̃i, and the response θ̃ is set
as 〈i, s̃i〉 (line 17). This also results in updating the partial
description of the failing high-level action in line 21.

The theoretical results shown below formalize the notions
about the properties of learned descriptions.

Lemma 2. The response θ̃ to the user-level query generated
by Algorithm 1 is correct given the correct agent responses
to all agent-level queries corresponding to the same user-
level query.

Proof (Sketch). The query refinement process generates the
intermediate states when executing a plan, and refines each

one of them to one of their possible concretizations. For each
pair 〈si, si+1〉 of consecutive low-level states the response
interpretation process asks the agent if it can reach state si+1

from the state si. If the agent responds affirmatively, then
there exists a plan at low-level whose temporal abstraction is
equivalent to the high-level action that query refinement pro-
cess used to generate s̃i and s̃i+1. If the agent cannot reach
si+1 from si, then the response generation process reports a
failure. In both the cases, the user-level query’s response is
correct.

Theorem 1. Given a set of observations O, and the set of
predicates P̃ in the user vocabulary, every observed transi-
tion in O is a grounding of at least one action from the set of
HLAs Ã.

Proof (Sketch). For every transition 〈si, si+1〉 in O, on ab-
straction to high-level vocabulary si and si+1 will map to
either same high-level state or different. If they map to dif-
ferent high-level state then there will be a high-level action
capturing the transition, because of the way we construct the
set of high-level instructions. If these states map to same
high-level state, then this transition will be captured as the
temporal abstraction of the subsequent action in the trace
that maps to a different high-level state (along with all low-
level actions in between). Hence, because of the way we
construct high-level actions, each of the observation in O
maps to at least one high-level action.

The learned description is sound if all observed transitions
in O are grounding of at least one of the learned action in Ã,
and the precondition and effect of the action that they cor-
respond to models the state before and after their execution
correctly.

Theorem 2. The learned description of the capabilities of an
agent with deterministic black-box policy is sound given the
the predicates P̃ in the user vocabulary and the set of low-
level observationsO generated in stationary fully observable
settings.

Proof (Sketch). As shown in Theorem 1, each of the low
level observation is captured by at least one of the high-level
action. Now the partial preconditions of a high-level action
ãi are created by taking intersection of all the states where
ãi was successfully executed. Hence the partial precondi-
tions are correct given the observations O as they are valid
for each one of them. Same argument is valid for the partial
effects as they are constructed similarly to the preconditions.
The set of partial preconditions and effects is changed only
based on responses of the agent to the user-level queries us-
ing the methodology described in Verma, Marpally, and Sri-
vastava (2021), which was shown to always learn the correct
descriptions.1 Hence, the learned descriptions of the agent
actions is sound given the user vocabulary P̃ and low-level
observations O.
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Figure 3: GVGAI’s domains; (a) Zelda, (b) Cook-Me-Pasta,
(c) Escape, and (d) Snowman.

4 Empirical Evaluation
We implemented and evaluated Alg. 1 with two types

of agents to investigate its applicability on agents using
arbitrary internal planning and reasoning paradigms. Policy
agents use (possibly learned) black-box policies to respond
to agent-level queries (Def. 6). We used policy agents with
hand-coded policies for evaluating Alg. 1. Search agents
respond to agent-level queries using search algorithms. Our
implementation of search agents for evaluation uses A∗
search. We now describe the setup used for the experiments.

4.1 Experimental Setup
In the context of this work, the agents are based on

the General Video Game Artificial Intelligence (GVGAI)
framework (Perez-Liebana et al. 2016, 2019). We modified
the games to make them stationary and deterministic. E.g.,
in Zelda domain, we set the monsters as stationary. We
performed experiments on four domains as shown in Fig.3;
Zelda, Cook-Me-Pasta, Escape, and Snowman. Each of
these domains has a grid like structure, and the agent has to
perform a set of actions to finish the game.

Zelda. The Zelda domain, as shown in Fig. 3a, consists of
a key, the player, and monsters. To finish the game, all the
monsters must be killed and the key must be used to open a
door to escape. The player can move one cell at a time in
the direction it is facing. If the player moves into the cell
containing the key, the player picks up the key by executing
the low-level action E (special keystroke). The same key is
used to kill the monster when the player is facing the mon-
ster and is in a cell adjacent to the monster, and to escape
when the player is in a cell adjacent to the door and facing it.

Cook-Me-Pasta. The Cook-Me-Pasta domain, as shown
in Fig. 3b, consists of raw pasta, sauce, boiling water, tuna
(fish), lock, and key. The objective is to cook tuna pasta
using a three step process. First the pasta is cooked by
adding boiling water to the raw pasta, this can be done by

1Theorem 3 in Verma, Marpally, and Srivastava (2021)

(a) (b)

(c)

Keystrokes 1: W→A→E
Keystrokes 2: S→S→A→W→W→A→E

(:action a9
:parameters ()
:precondition (and (at p1 6-3)

(at m1 5-3)
(monster_alive m1)
(next_to_monster))

:effect (and (clear 5-3)
(not (at m1 5-3))
(not (monster_alive m1))
(not (next_to_monster))))

(d)

If the player p1 is at cell (6-3), the
monster m1 is alive, at cell (5-3) and
next to p1, then the agent can act to
reach a state where m1 is not alive,
cell (5-3) is empty and p1 is not next
to any monster.

(e)

Figure 4: Learning the kill monster action of Zelda. Sub-
figures (a) and (b) show the simulator states immediately
before and after executing either of the keystroke sequences
shown in (c). Alg. 1 generates and uses such sequences to
learn a user-interpretable symbolic description of a high-
level action (d) for killing a monster when the agent is
in an arbitrary orientation next to it. This action captures
keystroke sequences such as those in (c) as possible im-
plementations or refinements. (e) A boilerplate readable de-
scription that can be generated from the learned description.

pressing E while holding both the ingredients. Similarly
tuna is cooked by mixing sauce and tuna. Finally, the
cooked pasta and the cooked tuna are to be mixed together.
One or more of the ingredients can be locked in a room
which must be opened using a key.

Escape. The Escape domain, as shown in Fig. 3c, consists
of movable blocks, fixed holes, and cheese. The blocks can
be pushed into the holes to clear out a path. The game is
finished when the player reaches the location with cheese.

Snowman. The Snowman domain, as shown in Fig. 3d,
consists of three pieces of a snowman: the top, middle, and
bottom piece; a key that can be used to unlock a door (like
other domains), and the goal cell. The objective of the game
is to assemble the snowman in the goal location in order,
constrained by the player being able to hold only one piece
at any given time.



Table 1: Predicates included in the user vocabulary for each test domain.

Zelda Cook-Me-Pasta Escape Snowman

at(?ob ?loc) at(?ob ?loc) at(?ob ?loc) at(?ob ?loc)
wall(?loc) wall(?loc) wall(?loc) wall(?loc)
clear(?loc) clear(?loc) clear(?loc) clear(?loc)
has key() has key() is hole(?loc) has key()
escaped() pasta cooked() is goal(?loc) player has(?ob)
monster alive(?m) is door(?loc) is block(?loc) is goal(?loc)
next to monster() escaped() placed(?part)

is door(?loc)

User-Interpretable Vocabulary. The user interpretable
vocabularies for each of the four domains are shown in Ta-
ble1. The semantics of each of these predicates is available
in the supplementary material. Note that information like
orientation of the agent (player) in each of these domains
is not captured by any of the predicates. This information
is important for the low-level policies as certain actions can
only be executed in certain orientations. E.g., in Zelda do-
main, the player must face the monster when killing it.

The complete list of capabilities of an agent may be irrel-
evant to a user’s current needs. Without loss of generality,
our implementation allows the input to include sets of for-
mulas representing the properties that may be of interest to
the user. This set can be the set of all grounded predicates in
the user’s conceptual vocabulary. We then query the agent in
a way that learns descriptions of actions (agent capabilities)
that are relevant for achieving this set of input properties.

For each domain, and for each grid size in that domain,
we create a random game instance with the goal as achieving
one of the user’s specified properties of interest. The number
of walls in all four domains is set to 20% of the total cells in
the grid, whereas all other objects are generated randomly.
We use the solution to that instance to generate the low-level
trace that is used in lines 1-2 of the algorithm. These solu-
tions are not always optimal. All the experiments are run on
5.0 GHz Intel i9 CPUs with 64 GB RAM running Ubuntu
18.04.

4.2 Results
The symbolic description learner learns the correct de-

scription of all high-level actions Ã in a domain. Fig.4 shows
one such learned description from the Zelda domain. Full
learned models for all four domains are included in the sup-
plementary material. Note that the cell locations mentioned
correspond to the game state in Fig. 2a. The learned action
names are random (a9 in Fig.4c), and this can be interpreted
as the kill monster action. Fig. 4d shows a boilerplate read-
able description that can be generated from the learned de-
scription. Note that this readable description generation is
not part of this work.

To analyze the effect of increasing the size of the state
space on the performance of the search and policy agents,
we vary the grid size and analyze its affect. Fig. 5 shows
the graphs for the experimental runs on the four domains.
In all four domains, for both kinds of agents, the number of
queries increases as we increase the grid size. This happens

because the queries are grounded, and the number of pos-
sible groundings of the predicates increases as we increase
the grid size. The number of queries required by the policy
agent is higher than that of the search agent in most cases.
This is because large number of user-level queries fail to run
successfully on the agent as the plan in the user-level query
does not always align with the policy of the agent. However,
the time per query is lesser for the policy agents as they can
answer the queries by following their policy, whereas the
search agents perform an exhaustive search of the state space
for every agent-level query.

Correctness. Since there is no ground-truth model to check
the accuracy of the learned model, we empirically check
if the learned model conforms to all observed traces. This
means for each of the transition in the observed traces, we
check if the transition is a grounding of at least one of the
learned actions. For all four domains, we did not find any
instance where this was not the case.

5 Related Work
Konidaris, Kaelbling, and Lozano-Perez (2018) present

a paradigm for learning high-level propositional models of
options representing various “skills.” James, Rosman, and
Konidaris (2020) extend this approach to learn models in a
form that is generalizable to multiple tasks. These existing
approaches are complementary to the presented work. While
they use options or skills as inputs to learn models defining
when those skills will be useful in terms of auto-generated
symbols (for which explanatory semantics could be derived
in a post-hoc fashion), our approach uses user-provided in-
terpretable concepts as a priori inputs to learn agent capa-
bilities: high-level actions as well as their relational, inter-
pretable descriptions in terms of the input vocabulary.

Zhang et al. (2018) learn symbolic transition models and
use them for planning using a set of input attributes. These
attributes are interpretable and the set of actions are learned
in the form of transitions using random walks in the environ-
ment. This needs extensive hand-coding as each of the state
must manually be assigned all attributes that are present or
true in that state. Additionally, the set of attributes is given
as input which does not take into account user preferences.

Kansky et al. (2017) learn symbolic models of simula-
tors based on ATARI games by learning action effects by
using conjunctions of binary input features. Some other ap-
proaches learn models using symbolic physics engine pa-
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Figure 5: Performance comparison of search-based agents and policy-based agents in terms of the number of queries asked and
time taken per query when increasing the grid size.

rameters and graph neural networks (Battaglia et al. 2016;
Cranmer et al. 2020). Through their description language,
they can generalize over multiple tasks using the learned
entities and operators. Agrawal et al. (2016) and Fragki-
adaki et al. (2016) use convolutional neural networks to
learn intuitive physical models of object interaction. These
approaches need a lot of training data to learn the correct
model in their chosen representations. The same problem is
faced by approaches that create interpretable descriptions of
reinforcement learning policies using trees (Liu et al. 2018)
or specialized programming languages (Verma et al. 2018).
Unlike these approaches our method needs minimal data and
can generalize using relational transitions captured by the
symbolic models that we learn.

The planning community has also worked on learning
symbolic models of agents similar to the ones that we
learn in this work. Jiménez et al. (2012) and Arora et al.
(2018) present comprehensive review of such approaches.
These methods make broad assumptions that the agent
model is internally expressed in the same vocabulary as the
user’s (Gil 1994; Weber, Morwood, and Bryce 2011), or at
a similar level of abstraction (Mehta, Tadepalli, and Fern
2011; Verma, Marpally, and Srivastava 2021). Our approach
is able to learn the symbolic descriptions in terms of fewer
concepts than used by the agent.

6 Conclusion
We presented a novel approach for learning the symbolic

description of an AI system in terms of user-interpretable
concepts through active query answering. Our approach
works for settings where the user’s conceptual vocabu-
lary is imprecise and cannot directly express the agent’s
capabilities. Our empirical analysis showed that we can

successfully learn these descriptions for agents internally
using black-box deterministic policies, and for planning
agents using search techniques. Extending this approach
for partially observable settings and relaxing the various
assumptions we made are some of the promising future
directions for this work.

Broader Impact
In the recent past, learning interpretable descriptions of the
capabilities of an AI system is one of the main focus areas
of AI research. Our work would enable people with differ-
ent level of knowledge and concepts to understand the ca-
pabilities of an AI system in terms that they can interpret
and to assess if such systems are safe to work with. Our
approach provides correctness guarantees of learning user-
interpretable symbolic descriptions given the access to finite
observation traces of the agent executing its black-box pol-
icy in a simulator. If the simulator is susceptible to errors,
our approach might correspondingly generate incorrect de-
scriptions. This issue can be mitigated using formal verifica-
tion of the simulator.

Acknowledgements
This work was supported in part by the NSF grants IIS
1844325, OIA 1936997, and the ONR grant N00014-21-1-
2045.

References
Agrawal, P.; Nair, A. V.; Abbeel, P.; Malik, J.; and Levine,
S. 2016. Learning to Poke by Poking: Experiential Learning
of Intuitive Physics. In Proc. NIPS.



Anjomshoae, S.; Najjar, A.; Calvaresi, D.; and Främling, K.
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