
Automated Planning and Robotics Simulation with PDSim

Emanuele De Pellegrin, Ronald P. A. Petrick
Edinburgh Centre for Robotics

Heriot-Watt University
Edinburgh, Scotland, United Kingdom

{ed50,R.Petrick}@hw.ac.uk

Abstract
This paper presents the current state of development and
plans for the PDSim system. PDSim is an external tool that
can be installed on the Unity game engine adding support
for the simulation of classical plans using 3D animations
and visualization methods defined by the user. New additions
planned for PDSim aim to enable users to intuitively define
animations without the need to learn a new scripting language
and connect with the Robotic Operating System (ROS) to un-
lock the potential use of the simulation framework for auto-
mated planning problems in robotics.

Introduction
The task of modelling planning domains and verifying
plan solutions can be quite challenging, especially for real-
world planning problems. While representation languages
like PDDL (McDermott et al. 1998) provide a standard way
of representing planning models supported by a range of
planners, it can be difficult to catch modelling errors due to
the complexity of the knowledge that needs to be specified
(e.g., definitions of state properties, actions, and objects) and
the level of abstraction that is often required for ensuring the
generation of tractable solutions.

Although several tools do exist to aid in the validation
of planning domain models (e.g., VAL (Howey and Long
2003)), and formal plan verification methods are a growing
area of research (Bensalem, Havelund, and Orlandini 2014;
Cimatti, Micheli, and Roveri 2017; Hill, Komendantskaya,
and Petrick 2020), approaches based on visualisation meth-
ods and visual feeedback can also play an important role
in addressing the problem of correctly modelling planning
domains. Visual tools can also serve as an environment for
displaying, inspecting, and simulating aspects of the plan-
ning process, which can aid in plan explainability for human
users (Fox, Long, and Magazzeni 2017).

PDSim (De Pellegrin 2020) introduced a system to vi-
sualise and simulate plans for classical planning problems
defined in PDDL. While visualisation of planning domains
and plan solutions is not a new idea (Vrakas and Vlahavas
2005; Vaquero et al. 2007; Chen et al. 2020; Tapia, San Se-
gundo, and Artieda 2015; Le Bras et al. 2020), PDSim ap-
proaches the problem by building a graphical environment

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

for plan visualisation and simulation within the Unity game
engine (Unity Technologies 2020). PDDL is used to define
the structure of the domain knowledge and the problem for-
mulation (e.g., planner requirements, language models used
in the domain, plus standard definitions of the domain and
problem). These components are used by a planner to check
that a solution exists and to generate a list of actions (a plan)
that satisfies the goals. Using the plan, PDSim interprets the
action effects as 3D animations and graphics effects to de-
liver a visual explanation of the world and its actions during
plan execution. In particular, the main “actors” involved in
PDSim simulations are the properties responsible for defin-
ing the initial state of the world and the action effects.

In this paper, we describe new additions to PDSim that
improve the quality of the simulation and provide support
for integrating PDSim more widely (e.g., in robotics appli-
cations). While the original version of PDSim focused on
visualising actions during run time in a 3D environment, the
PDDL parsing interface was very weak as it only supported a
small set of PDDL features. This meant that if the user didn’t
modify the domain and problem appropriately, errors could
have occurred in the simulation. This interface has now been
improved to support a wider range of PDDL language fea-
tures. Several extensions have also been implemented to im-
prove the mechanism for creating custom animations. For
instance, the old version of PDSim only supported the C#
scripting language and required familiarity with the standard
flow of the Unity game engine. A new animation system has
now been implemented based on the xNode framework, en-
abling more flexibility for plan animation. Finally, support
for the Robot Operating Sytem (ROS) (Quigley et al. 2009)
has also been added, offering a way to connect and publish
custom messages to ROS, enabling the use of PDSim as a
visualization tool for robotics and similar applications.

The rest of the paper is organised as follows. First, we
review related work and provide a brief overview of the
PDSim system. We then describe recent additions to PDSim
with a technical overview of the components and examples
of their use. We conclude with future work and a discussion
of the PDSim development roadmap.

Related Work
PDSim (De Pellegrin 2020) is part of the small ecosystem
of simulators for automated planning which use visual cues



and animations to translate the output of a plan into a vi-
sual environment. The closest approach to ours is Planima-
tion (Chen et al. 2020) which uses the Unity game engine
as the front end to display objects and animate their position
while following a given plan. Animations are defined using
an ad-hoc language (namely an animation profile) similar to
PDDL. PDSim aims to remove this additional step with its
new animation system that provides a more intuitive system
for users (see Figure 6, discussed in greater detail below).

The Logic Planning Simulator (LPS) (Tapia, San Se-
gundo, and Artieda 2015) also provides a planning simu-
lation system that represents PDDL objects with 3D models
in a user-customizable environment. The approach is inte-
grated with a SAT-based planner and a user interface that
enables the execution of a plan to be simulated while vi-
sualising updated to the state of the world and individual
PDDL properties in the 3D environment. Unlike PDSim and
Planimation, LPS is not based on Unity but provides its own
user interface for plan visualisation. Several user-specified
files are also required to define 3D object meshes, the rela-
tionship between PDDL elements and 3D objects, and the
specific animation effect to be produced.

Several systems also exist to help users formalize plan-
ning domains and problems through user-friendly interfaces.
For instance, systems like GIPO (Simpson, Kitchin, and
McCluskey 2007), ItSimple (Vaquero et al. 2007) and VIZ
(Vodrázka and Chrpa 2010) use graphical illustrations of the
domain and problem elements, removing the requirement
of PDDL language knowledge, to help new users approach
planning domain modelling for the first time. Other software
such as Web Planner (Magnaguagno et al. 2017) and Plan-
ning.Domains (Muise 2016) use Gantt charts or tree-like
visualisation methods to illustrate the generated plan and
the state space searched by a particular planning algorithm.
PlanCurves (Le Bras et al. 2020) uses a novel interface based
on time curves (Bach et al. 2015) to display timeline-based
multiagent temporal plans distorted to illustrate similarity
between states. All of these tools attempt to assist users in
understanding how a plan is generated and to help detect po-
tential errors in the modelling process.

Simulators using a game engine such as MORSE (Echev-
erria et al. 2011) or Drone Sim Lab (Ganoni and Mukundan
2017) are also prevalent in robotics applications. A game
engine offers benefits like multiple cameras to follow the
simulation, a physics engine and realistic post-processing ef-
fects with no need to implement them from scratch (Ganoni
and Mukundan 2017). PDSim is built by extending the Unity
game engine editor (Unity Technologies 2020) and using the
components offered by the engine such as a path planner,
lighting system, and scene management, among others.

Planning Domain Simulation with PDSim
PDSim has been developed to work as an external module
for the Unity game engine, a 2D and 3D game engine widely
known and used in the video game industry. Unity offers
a customisable GUI editor and many available components
such as a built-in physics engine, realistic shaders and mate-
rials for 3D models, and a path planning library, to rapidly
prototype a project. Thanks to its modularity, it is possible to

Figure 1: PDSim system architecture.

extend the interface to fit user needs, for instance by defining
custom animations for PDDL objects or by extending exist-
ing animations to reuse models from different simulations
without creating them from scratch every time.

Every new simulation in PDSim creates a Unity scene1,
an essential component of the editor in which all objects
and components are stored and managed. When a new sim-
ulation is created, the PDDL parser component creates a
copy of the elements defined in the PDDL domain and prob-
lem files that can be used with the C# scripting language
(the object-oriented programming language in Unity). In
PDSim, all of the PDDL elements (e.g., types, predicates,
actions, etc.) have a corresponding class representation in
C#. The user can customise the simulation in different ways,
for example, to let it use the path planning component for
the movement instead of a basic translation animation, ran-
domise the colours of a model, play sounds, spawn a particle
system, and so on. During plan generation, the simulation
manager looks in the simulation environment object to see if
a plan is already available. If the plan is not saved locally, the
simulation manager will send a request to a Python server to
generate a plan using the cloud planning service (currently
Planning.Domains (Muise 2016)) for the domain and prob-
lem that are stored locally on the server (De Pellegrin 2020).

A general overview of the system architecture is given
in Figure 1, showing the individual core components and
the communication between components through a network.
The Unity front-end can send requests or connect either to
the Python server (the back-end of PDSim) or to the Robot
Operating System (ROS) (Quigley et al. 2009), the popular
framework for robotics applications.

Examples of plan execution using PDSim are illustrated
in Figures 2 and 3. Figure 2 shows an example of a stacking
animation from the Blocks World domain, where blocks are

1See https://docs.unity3d.com/Manual/CreatingScenes.html



Figure 2: Blocks World plan execution.

Figure 3: Sokoban plan execution.

Figure 4: Plan validation check in PDSim.

stacked during plan execution, while Figure 3 shows stones
being moved by the player in the Sokoban domain.2 Pro-
vided a plan can be generated, PDSim will attempt to ani-
mate the plan during execution. This includes plans where
modelling errors may be present in the original PDDL do-
main or problem files. For instance, Figure 4 shows an ex-
ample from the Blocks World domain where the stack action
has been modified to not set the target block as not clear
when stacking another block on top of it. Regardless of the
error, a plan is generated and the simulator can animate it.
However, in this case the PDSim simulation has rendered
the block as being stuck in mid-air, thus indicating a possi-
ble error in the domain formulation.

2The plan execution examples in Figures 2-4 are taken from
(De Pellegrin 2020). We refer the reader to that paper for more
information on the simulation of these domains in PDSim.

{
’objects’:

[{’name’: ’apn1’, ’type’: ’airplane’},
{’name’: ’apt1’, ’type’: ’airport’},
{’name’: ’apt2’, ’type’: ’airport’},
...],

’predicates’:
[{’name’: ’in-city’,

’attributes’: [’place’, ’city’]},
{’name’: ’at’,
’attributes’: [’physobj’, ’place’]},

{’name’: ’in’,
’attributes’: [’package’, ’vehicle’]}],

...
}

Figure 5: JSON output from PDDL parser.

Figure 6: New animation definition system.

Extending the PDSim System
We now describe the major improvements to PDSim, which
include a new and robust PDDL parser, a new animation def-
inition system, and interface support with ROS.

Parser
PDSim now offers a client-server connection with an exter-
nal python server using ZeroMQ3. This unlocked the possi-
bility of using several packages and libraries available with
python and integrating them in the Unity engine communi-
cation on an internal network. In particular, the Tarski li-
brary4 is used to parse the PDDL domain and problems files
and produce a Javascript Object Notation (JSON) version.
An example of the parsed output used in PDSim is shown in
Figure 5. The new parser now enables PDSim to support a
more comprehensive set features of the PDDL language (pri-
marily version 1.2, plus some additional features of higher
PDDL versions) and doesn’t require the user to modify the
domain to follow the previous PDDL constraints. Tarski is
well supported by numerous researchers and constantly up-
dated, providing a useful tool for future additions to PDSim.

Animation System
PDSim’s new animation system has been developed to be
much more intuitive, using nodes and graphs to connect

3See https://github.com/zeromq.
4See https://github.com/aig-upf/tarski.



Figure 7: New type representation system.

components that are related to the animation. Figure 6 shows
an example of an animation definition for the predicate at
taken from the Logistics domain. Nodes can be connected as
user preferences. For instance, in the example, the graph is
intended to capture the idea that when the animation starts,
it should animate the translation (Move To Object) of the
place to the physobj objects. The new animation system in
PDSim is an implementation of the xNode framework5 for
Unity. This framework allows the use of a node system that
was modified for PDSim. For each predicate defined in the
domain, the AnimationNodeGraph is assigned and the user
can customise the animation by inserting new nodes as il-
lustrated in Figure 6. During plan execution, if a predicate is
in the effects list of the action being executed, the animation
graph is loaded and every animation node is played. For ex-
ample, in the Blocks World domain, the predicate on might
have an animation graph that specifies a Move To Object an-
imation node to move the first block on top of the second.
When the action stack is called the block is moved accord-
ingly to reflect the animation graph specified.

ROS interface
Robotics applications are a common application domain for
automated planning tools. The Unity engine is also becom-
ing an important tool for roboticists to help simulate robots
and robot deployment environments (Green et al. 2020).
ROS is widely used as a robotics system and ROSPlan
(Cashmore et al. 2015) is the main framework for automated
planning and robotics. As a result, PDSim has been extended
to support communication with ROS and its packages us-
ing the ROS-TCP-Connector library6 for Unity. This library
now makes it possible to set up a simulation and send cus-
tom messages to ROS, or to subscribe to ROS topics.

Examples
Figure 7 shows how types are now handled in PDSim. Af-
ter parsing the PDDL domain, a tree data structure of types

5See https://github.com/Siccity/xNode.
6See https://github.com/Unity-Technologies/ROS-TCP-

Connector.

Figure 8: Animation example for Blocks World.

Figure 9: Animation example with modified domain.

is created to simplify the task of checking if a type is a sub
or super-type during plan execution. Leaf types (highlighted
in blue in the example) are the PDDL objects responsible
for animations and 3D visualization in PDSim. The type
tree helps running animations identify a type and all its sub-
types. For example, in the Logistics domain the predicate at
requires a package type and a vehicle type. From the type
tree, we can get that both truck and aeroplane are vehicles
so that an animation that uses a vehicle type will animate
both of these two sub-types.

Figure 8 shows an example of how PDSim can be highly
customisable. For instance, in the Blocks World domain the
user can set a preferred model representing the block type
(e.g., a car). The example also shows how the animation of
predicates can be customised: the on predicate has been de-
fined to stack the objects on the left side rather than on top
of each other.

Finally, Figure 9 illustrates the flexibility of some of the
visualisation features in PDSim. In this example, the Blocks
World domain has been modified to introduce a table type.
The user can set the model for this type and PDSim can reuse
the animations defined for the non-modified domain to suc-
cessfully display the plan simulation.



Conclusion
This paper described a set of recent additions to PDSim, a
simulation system for PDDL that can be used to animate
classical plans. Additions to the basic PDSim system in-
cluded a new parser supporting a more comprehensive set
of PDDL language features, a new animation system, and
the ability to communicate with the Robot Operating Sys-
tem (ROS). Future work on the system aims to provide sup-
port for temporal planning and epistemic planning models.
A web version of PDSim is also currently in development
to interface with the Planning.Domains (Muise 2016) web
editor as an internal plugin. As a sub-project from PDSim,
a planner for the Unity engine is also in development to be
used for game development, which will help in the develop-
ment of complex AI gaming systems.

References
Bach, B.; Shi, C.; Heulot, N.; Madhyastha, T.; Grabowski,
T.; and Dragicevic, P. 2015. Time curves: Folding time to
visualize patterns of temporal evolution in data. IEEE trans-
actions on visualization and computer graphics 22(1): 559–
568.

Bensalem, S.; Havelund, K.; and Orlandini, A. 2014. Veri-
fication and validation meet planning and scheduling. Inter-
national Journal on Software Tools for Technology Transfer
16: 1–12.

Cashmore, M.; Fox, M.; Long, D.; Magazzeni, D.; Ridder,
B.; Carrera, A.; Palomeras, N.; Hurtos, N.; and Carreras, M.
2015. ROSPlan: Planning in the Robot Operating System. In
Twenty-Fifth International Conference on Automated Plan-
ning and Scheduling.

Chen, G.; Ding, Y.; Edwards, H.; Chau, C. H.; Hou, S.; John-
son, G.; Sharukh Syed, M.; Tang, H.; Wu, Y.; Yan, Y.; Gil,
T.; and Nir, L. 2020. Planimation. doi:10.5281/zenodo.
3773027. URL https://doi.org/10.5281/zenodo.3773027.

Cimatti, A.; Micheli, A.; and Roveri, M. 2017. Validating
domains and plans for temporal planning via encoding into
infinite-state linear temporal logic. In Proceedings of AAAI,
3547–3554.

De Pellegrin, E. 2020. PDSim: Planning Domain Simula-
tion with the Unity Game Engine. In Proceedings of the
ICAPS Workshop on Knowledge Engineering for Planning
and Scheduling (KEPS).

Echeverria, G.; Lassabe, N.; Degroote, A.; and Lemaignan,
S. 2011. Modular open robots simulation engine: Morse. In
2011 IEEE International Conference on Robotics and Au-
tomation, 46–51. IEEE.

Fox, M.; Long, D.; and Magazzeni, D. 2017. Explainable
Planning. In Proceedings of the IJCAI Workshop on Ex-
plainable AI.

Ganoni, O.; and Mukundan, R. 2017. A framework for visu-
ally realistic multi-robot simulation in natural environment.
arXiv preprint arXiv:1708.01938 .

Green, C.; Platin, J.; Pinol, M.; Trang, A.; and Vij, V.
2020. Robotics simulation in Unity is as easy as 1,

2, 3! URL https://blog.unity.com/technology/robotics-
simulation-in-unity-is-as-easy-as-1-2-3.
Hill, A.; Komendantskaya, E.; and Petrick, R. P. A. 2020.
Proof-Carrying Plans: A Resource Logic for AI Planning.
In International Symposium on Principles and Practice of
Declarative Programming (PPDP), 1–13.
Howey, R.; and Long, D. 2003. VAL’s Progress: The Au-
tomatic Validation Tool for PDDL2.1 used in the Interna-
tional Planning Competition. In Proceedings of the ICAPS
Workshop on The Competition: Impact, Organization, Eval-
uation, Benchmarks.
Le Bras, P.; Carreno, Y.; Lindsay, A.; Petrick, R. P. A.; and
Chantler, M. J. 2020. PlanCurves: An Interface for End-
Users to Visualise Multi-Agent Temporal Plans. In Proceed-
ings of the ICAPS Workshop on Knowledge Engineering for
Planning and Scheduling (KEPS).
Magnaguagno, M. C.; Fraga Pereira, R.; Móre, M. D.; and
Meneguzzi, F. R. 2017. Web planner: A tool to develop clas-
sical planning domains and visualize heuristic state-space
search. In ICAPS Workshop on User Interfaces and Schedul-
ing and Planning (UISP).
McDermott, D.; Ghallab, M.; Howe, A.; Knoblock, C.; Ram,
A.; Veloso, M.; Weld, D.; and Wilkins, D. 1998. PDDL—
The planning domain definition language. Technical Report
CVC TR-98-003/DCS TR-1165, Yale Center for Computa-
tional Vision and Control.
Muise, C. 2016. Planning.domains. ICAPS System Demon-
stration.
Quigley, M.; Conley, K.; Gerkey, B. P.; and Faust, J. 2009.
ROS: An Open-Source Robot Operating System. In Pro-
ceedings of the ICRA Workshop on Open Source Software.
Simpson, R. M.; Kitchin, D. E.; and McCluskey, T. L. 2007.
Planning domain definition using GIPO. The Knowledge
Engineering Review 22(2): 117–134.
Tapia, C.; San Segundo, P.; and Artieda, J. 2015. A PDDL-
based simulation system. In Proceedings of the IADIS Inter-
national Conference Intelligent Systems and Agents.
Unity Technologies. 2020. Unity. URL https://unity.com.
Vaquero, T. S.; Romero, V.; Tonidandel, F.; and Silva, J. R.
2007. itSIMPLE2.0: An Integrated Tool for Designing Plan-
ning Domains. In Proceedings of ICAPS, 336–343.
Vodrázka, J.; and Chrpa, L. 2010. Visual design of planning
domains. In Proceedings of ICAPS Workshop on Knowledge
Engineering for Planning and Scheduling (KEPS), 68–69.
Vrakas, D.; and Vlahavas, I. 2005. A Visualization Environ-
ment for Planning. International Journal of Artificial Intel-
ligence Tools 14(6): 975–998.


