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Abstract

Romie is a decision support tool based on AI’s latest advances
in the domain of robust scheduling. Unlike all its predeces-
sors, the tool allows to (i) visually model the operational prob-
lem and context entirely (ii) optimize to find near-optimal
schedules while taking uncertainty into account and deals
with (iii) a combination of various key performance indica-
tors (KPIs). It comes with a web user interface. Part or all
of the modelled activities may be associated to random vari-
ables describing their stochastic durations, in order to produce
schedules that are robust w.r.t. temporal uncertainty. Hence,
depending on the pursued KPIs, the schedules maximize a
combination of the following terms: the probability of satis-
fying the problem constraints, the expected return/efficiency,
the expected outcome quality, and even the operators’ well-
ness by minimizing its expected extra-hours. Initially devel-
oped for spatial exploration and demonstration in the context
of Mars analog missions (i.e. missions on Earth that simulate
condition and aspects of Mars missions), this versatile tool
is here applied to operations management in both biotech-
nology manufacturing and robots parametrization in a cave
exploration context.

Introduction
Project management realizes about 30% of the world gross
product (Turner et al. 2010). However, most of existing stud-
ies have solely been done in machine scheduling environ-
ments (Herroelen and Leus 2005). How to deal with process-
ing time uncertainty when facing a larger, complex, schedul-
ing problem which possibly involves multiple human and/or
operators, unknown probability distributions, hard deadlines
and exotic constraints? In this paper, we introduce a visual
tool, Romie, for computer-aided operations scheduling un-
der uncertainty, and show how it has been successfully ap-
plied to three very different case studies of real world human
operations management: 1) the UCL to Mars 20181 analog
mission that took place at the Mars Research Desert Station
(Utah), 2) the modelling and scheduling of a manufacturing
project in an real Belgian biotech company, and finally 3)
the complex mission operations of the Jet Propulsion Lab-
oratory (JPL) team in the DARPA Subterranean Challenge.
The results obtained from our three case studies convey three
very important messages: (a) Even for very complicated and
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Figure 1: Principal functionalities of Romie tool.

various different operational contexts, a common modelling
framework exists, being user friendly, visual, and rigorous at
the same time; (b) Even for real sized problems, computer-
optimized solutions outperform the schedules hand-crafted
by field experts in general, and serve as a strong basis for
decision making, as the deciders can always adapt and reuse
these depending on external factors; (c) Schedules obtained
while taking uncertainty into account systematically outper-
form that obtained from deterministic assumptions in terms
of reliability and expected KPIs, while preserving most of
the solutions quality; the latter result remains valid even
when provided very bad representation of the uncertainty.

Description of the tool
Romie is a software tool aiming at supporting the decision
makers in their operations management tasks. Romie uses
combinatorial optimisation, in order to generate and opti-
mize robust plannings for daily operations. The current key
functionalities are depicted in Fig. 1:

• The user friendly, visual modelling of the problem at
stake, in its own operational context: human and phys-
ical resources, operational constraints, key performance
indicators (KPIs), execution uncertainties.

• Robust scheduling: the optimization engine takes the time
uncertainty about each operation’s duration into consider-
ation, using modified-PERT distributions, yielding sched-



Figure 2: Left: the Mars Desert Research Station in Utah.
Right: extra-vehicular field operations.

ules with high probability of success.

• The schedules are optimised while pursuing (a combina-
tion of) various KPIs: success probability, expected cost,
expected quality, and even operators wellness.

In a research domain in constant evolution, Romie integrates
state-of-the-art advances in robust scheduling under uncer-
tainty (Saint-Guillain et al. 2021). Future versions will en-
able online monitoring of the operations, keeping the sched-
ule and the underlying model consistent with the current
state of the system, allowing the user to adapt and reopti-
mize future decisions based on past outcomes.

Optimization engine. A local search (LS) based ap-
proach, exploiting well-known sequence neighborhood op-
erators (relocate, 2-opt, swap, . . . ) and a simulated annealing
meta-heuristic, is used to explore the solution space. The LS
algorithm uses sample average approximation (Kleywegt,
Shapiro, and Homem-de Mello 2002) to evaluate the ex-
pected quality of a solution under time uncertainty. Each
new solution is compared with the incumbent one in terms
of its relative gain in each element of the ordered set of KPIs.

Timeline of Case Studies
This study presents a novel scheduling tool through three
different case studies. Each case study happened sequen-
tially, following and further validating different stages of the
tool’s development. Section 1 describes the UCL to Mars
2018 mission case study, which marked the very first stage
of the technology, assessing its ability to deal with com-
plex projects made of simple operational tasks, constraints
and resources. Section 2 describes a case study which took
place from in 2019 and 2020, in collaboration with a Bel-
gian biotech company. It permitted to extend our scheduling
formalism and technology and reach a higher stage of ap-
plicability, in the complex real world industrial context. At
the time these first two studies were conducted, the tool only
consisted in a theoretical background, a modelling formal-
ism and a versatile scheduling engine. Namely, there was
no user interface (UI). The technology was validated, but
not the ability of the end user to control and use it. Section
3 describes the third case study, in which human operators
and robots from JPL collaborate in the final circuit of the
DARPA Subterranean Challenge, scheduled for September
2021. Romie has been provided a brand new UI prototype,
allowing (for the first time) an end-user to model the prob-
lem using a user-friendly visual interface, run optimization
processes and visualize optimized schedules.

Figure 3: Top: visual models of two (out of seven) experi-
ments conducted during the UCL to Mars 2018 analog mis-
sion at MDRS. Top left: a soil analysis project in chemistry.
Top right: a project mixing biology and botanic. Bottom:
part of an optimized schedule followed the analog mission.

1 Robust Operations Management on Mars
The development of the scheduling tool started with the
UCL to Mars 2018 project. Unlike most scheduling prob-
lems, operations in a space mission must be planned days
ahead. Complex decision chains and communication delays
prevent schedules from being arbitrarily modified, hence on-
line reoptimization approaches are usually not appropriate.
The problem of scheduling a set of operations in a con-
strained context such as the Mars Desert Research Station
(MDRS, Fig. 2) is not trivial, even in its classical deter-
ministic version. It should be seen as a generalization of
the well-known NP-complete job-shop scheduling problem
(Lenstra and Kan 1979), which has the reputation of being
one of the most computationally demanding (Applegate and
Cook 1991). (Hall and Magazine 1994) reinforces the im-
portance of mission planning, as 25% of the budget of a
space mission may be spent in making these decisions be-
forehand, citing the Voyager 2 space probe for which the
development of the a priori schedule, involving around 175
experiments, required 30 people during six months. Nowa-
days, hardware and techniques have evolved. It is likely that
a super-equipped (i.e. with a brand new laptop) human brain
suffices in that specific case. Yet, the problems and require-
ments have evolved too. Instead of the single machine Voy-
ager 2, space missions have to deal with teams of astronauts.

Scheduling a Space Mission under Uncertainty. The
purpose of the UCL to Mars 2018 analog mission being
to simulate intensive scientific activities in a extra-planetary
context, the mission was organized based on 7 different re-
search projects to be conducted at the MDRS, from vari-
ous fields including biology, particle physics, medicine, en-
gineering, botanic, chemistry and finally AI. In total, more
than 230 tasks were involved by the seven research projects,
with at least as many constraints. In fact, the modelling
each research project merged within a global problem was
inevitable, since all the activities at MDRS depend on the
same limited and shared set of resources. Some projects re-
quired extra vehicular activities (EVAs), which for security



Figure 4: Varying the quality of the probability distributions, leading to five different experimental assumptions. Blue: estimator
distribution, used at optimization stage. Red, both plain and dotted: real hidden distributions, revealed at execution stage.

reasons require at least three participants amongst the op-
erators. EVAs usually take half a day, should be planned
and approved days ahead and happen at most once a day.
All operators then had their schedule linked to each others,
even concerning research projects that do not require EVAs.
Fig. 3 shows the modelling of two such research projects, to-
gether with an excerpt of optimized schedule. At the MDRS
however, computing an optimal schedule becomes signifi-
cantly less attractive as problem data, such as the manipula-
tion time of experiments, are different from their predicted
values. In a constrained environment with shared resources
and devices, such deviations can propagate to the remain-
ing operations, eventually leading to global infeasibility. In
(Saint-Guillain 2019), we investigated based on the real case
study of a Mars analog mission, the impact of stochastic ro-
bust modeling against a classical deterministic approach on
the reliability of a priori mission planning.

Uncertainty and Performance indicators. The main pur-
pose of (Saint-Guillain 2019) was to compare both deter-
ministic and robust stochastic approaches to the problem of
scheduling a set of scientific tasks under processing time
uncertainty, in the operational context of a Martian plane-
tary habitat. We empirically showed that taking uncertainty
into account while optimizing the schedules allows signif-
icant gains on average when applied on real instances in-
volving the constraints faced and objectives pursued during
a two-week Mars analog mission. The objectives were both
optimizing the mission’s success probability, namely the ro-
bustness, in terms of meeting the operational constraints and
deadlines, and maximizing the total scientific outcome, as
a linear combination of specific metrics, designed accord-
ing to the scientific objectives of each of the seven research
projects. Therefore, the optimization engine was computing
a near-optimal schedule when optimizing the robustness KPI
first, and expected scientific outcome second.

Uncertainty on the Uncertainty. The computational ex-
periments did also take into account uncertainty on the
stochastic knowledge itself. In fact, accurate estimations of
the probability distributions require a significant amount of
observations, which is often impossible in practice. It is then
usually both necessary and realistic to consider the real dis-
tributions as unknown (or hidden). Consequently, in (Saint-
Guillain 2019) the same computational experiments were re-
iterated under five different assumptions about the estima-
tor’s quality. The concept is illustrated in Fig. 4: five hypo-
thetical couples of both estimator and real distributions are
drawn. The estimator distribution is simply the distribution

used to describe the duration of an activity. It represents the
current knowledge one has about the activity’s uncertainty.
The estimator distributions are the only information avail-
able at optimization phase. Real (hidden) distributions are
only revealed when the computed schedules, therefore op-
timized considering blue distributions, were executed in a
simulation. The shapes of the real distributions were always
randomly generated, while controlling the resulting mean. In
the first case, the estimators (which used to be normal distri-
butions) were of very good quality, since their means always
coincide with that of the real distributions (even if the shapes
differ). In the third case, these were of bad quality, since each
estimator mean may be up to 30% away from that of the as-
sociated real distribution. Finally, the fourth (resp. fifth) case
stands for the situation in which all durations are underesti-
mated (resp. overestimated) in general. The results revealed
that, even when using very bad approximations of the proba-
bility distributions, the computed solutions significantly out-
perform those obtained from a classical deterministic formu-
lation, while preserving most of the solution’s quality.

Experiments and Results. The aforementioned paper
gives extensive details on both the experimental plan and
results. In a nutshell, we observed that as the accuracy of the
probability distributions that describe the project task dura-
tions varies from really accurate (no under/over estimation
on average) to very bad (30% under/over estimations on av-
erage), the proportion of the simulations in which the sched-
ules computed based on a classical deterministic model lead
to a successful execution varies from 5% to 8% only. Using
our probabilistic model, these success rates increase signifi-
cantly, between 70% and 90%. Two additional assumptions
were tested, in which the durations were either systemati-
cally underestimated, or systematically overestimated. The
first case is naturally catastrophic, leading to success of ap-
proximately 0.1% for the deterministic schedules, and 22%
thanks to our stochastic model. The second case is really in-
teresting, as it describes a very common behaviour of man-
agers who have to face time uncertainty, which consists in
systematically considering a duration larger than what they
believe the tasks is likely to last. In this particular context,
our simulations showed that our stochastic model increases
the schedules’ robustness from 34% to 95%.

Benefits and Price of Robustness. The experimental re-
sults clearly indicate the benefits of our probabilistic model
over a deterministic one, as even in the ideal case of all du-
rations being overestimated on average, the resulting sched-
ules reveal three times more reliable (succeed in 95% of the



Figure 5: A visual model that fully describes the tasks and constraints involved in one production campaign of the biotech
company’s most popular product.

cases). Independently of the estimators accuracy, the relative
difference in terms of the scientific outcome KPIs, between
schedules produces from both models, is of only 7% on aver-
age. In other words, even all durations being overestimated
and in our MDRS context, a deterministic schedule yields
7% more science on average, whereas it has at 60% chances
of failing the mission. This is the value of perfect informa-
tion over uncertainty. On the other hand, a success rate of
95% can be reached by sacrificing 7% of the outcome. This
is the benefits, and price, of robustness.

2 Biotech Manufacturing
As the day humans will live on Mars is still far ahead, we
wanted to extend our tool as well as the underlying technol-
ogy to tackle significantly different operational context, oth-
ers than human space missions. A Belgian company, special-
ized in biotechnology product manufacturing, accepted to
collaborate on the concrete project of modelling the schedul-
ing problem involved in the manufacturing of one of their
most popular products, and eventually solving this schedul-
ing problem, at different scales.

Modelling in the Industrial Real World Contexts. Fig.
5 shows how their production problem was modelled, using
the exact same visual formalism than that used in the context
of the UCL to Mars 2018 mission. More precisely, the dia-
gram depicted only represents one single production cam-
paign, involving around 85 tasks. However, for efficiency
reasons the company would usually run up to three produc-
tion campaigns in parallel, whereas the operational human
and physical resources remain fixed.

As the operational context in a biotech company signif-
icantly differs from that of a space station, various addi-
tional exotic constraints had to be added to the formalism,

and the other scheduling optimization technology extended
consequently. For instance, running several production cam-
paigns in parallel involve specific constraints, stating how
these may overlap or not. Naturally, we had to cope with
complex operator worktime management, such as weekends,
days off, part times, etc.. In particular, the concept of ex-
tra working time, whenever an operator must remain on site
later than normally accepted, revealed of major importance.
Finally, as the production process requires many tasks to be
double checked, constraints of the form “task A cannot be
executed by the same operator than task B” were mandatory
too, and special constraints related to physical resources had
to be designed as well. These are just examples amongst the
large number of additions that extended the initial technol-
ogy. Fig. 6 shows an example of solution for three produc-
tion campaigns in parallel.

Problem Modelling made Simple. The modelling for-
malism used to communicate with our collaborators from
the biotech company, namely the language used to describe
their scheduling problem, is based on simple diagrams such
as depicted in Fig. 5. In practice, once the problem visually
modelled, we translated the diagrams in a mathematical lan-
guage accepted by our scheduling engine. It is worth noting
that the time needed by our collaborators, being not schedul-
ing experts, to master the proposed visual modelling formal-
ism (and autonomously draw part of the models) revealed to
be of five to ten one-hour meetings only.

Optimizing Wellness: Stress Aversion. Cost-based KPIs,
such as minimizing total production makespan, or quality-
based KPIs such as the metric of total scientific outcome
considered in the UCL to Mars 2018 case study, are classi-
cal objectives to be pursued. In a human context however,



Figure 6: A possible optimized solution to the problem described by the model depicted in Fig. 5 when three production
campaigns are scheduled in parallel. The visualization includes the operators’ task sequences as well as the resource (machines)
usages. We see how the campaigns overlap at the bottom with the blue, green and purple bars: each denotes a campaign.

wellness and stress aversion are key concepts that should be
considered as important as raw efficiency in the middle and
long term. Our collaborators from the biotech company rec-
ognized that a significant part of their employees’ stress can
be attributed to unexpected deviations, resulting in delays
which, eventually, force the production team to do extra-
hours in order to stick to the constraints and deadlines. Con-
sequently, it has been decided to consider the expected total
number of extra-hours as key performance indicator.

Computing Robust production Schedules. Computa-
tional experiments involve from one to three production
campaigns. For each context, defined by the amount of cam-
paigns and whether the stochastic or the deterministic model
was used, 10 solutions were optimized. Average results are
listed in Table 1. An example of such computed schedule,
for three campaigns in parallel, is shown in Fig. 6.

Performances of the deterministic model. The average
reliability of the solutions optimized under deterministic
model significantly fall as the complexity of the problem in-
creases. Move from one production campaign to three cam-
paigns, the success rate under the over-estimation context
falls from 40% to 12.5%, when the extra-hours (EHs) KPI
is minimized prior to the makespan. In fact, schedule with
less planned EHs are more flexible, more likely to be able to
absorb unexpected delays, and thus more reliable in the end.
In particular, when minimizing EHs the computed sched-
ules come with 0.0 planned EH whilst, eventually, around
4.3∼5.9 EHs are required on average, for one production
campaign. Given three campaigns, significantly larger devi-
ations are observed from the initially planned EHs of only
1 hour on average, which increases up to 11.3∼23.6 hours.
Larger deviations of the planned versus observed makespan

KPI are also measured as the size of the problem increases.

Performances of the stochastic model. Compared to the
solutions obtained when all durations are considered as per-
fectly known in advance, namely when using a deterministic
model, the average measured performances of the schedules
computed in light of uncertainty are ridiculously obvious.
Whereas the success rate can be maintained above 96% for
three campaigns (instead of 2.5%!), the price of this robust-
ness as measured by the average difference in the makespan
cost KPIs, is of only 13% (38.1 to 43.2 days) when optimiz-
ing makespan first. When minimizing EHs first, makespan
second, taking uncertainty into account at optimization stage
leads to schedules having 98.7% chances of success on av-
erage, instead of 12.5%, with significantly less work stress
as the measured extra-hours are of 3.8∼9.9 hours, instead of
11.3∼23.6 hours. The price of robustness, in terms of pro-
duction efficiency, is however higher at it is now of +29%
makespan (45.5 to 58.9 days). Yet, anyone would be sur-
prised by a manager that decides to save the 29% and goes
for a schedule having only 12.5% chances to succeed.

3 DARPA Subterranean Challenge
NASA JPL’s Team CoSTAR2 is developing new technolo-
gies that are critical for enabling autonomous multi-robot
exploration of large and unknown underground voids. One
example of the application of these technologies is the
DARPA Subterranean Challenge (SubT) where terrestrial
cave exploration can be seen as an analogue exploration
mission for planetary subsurfaces (e.g. Lunar and Martian
caves), and as an application domain to prove grounds for
future space technologies. In SubT, robot teams are required

2DARPA Subterranean Challenge Team CoSTAR.
https://costar.jpl.nasa.gov



% Success Extra-Hours Makespan (days)
Exact Under Over Plan Exact Under Over Plan Exact Under Over

1C Det. Min. makespan 6.6 0.9 17.1 9.9 9.7 11.3 10.0 15.1 15.7 16.6 15.4
Min. extra-hours 60.9 37.5 40.2 0.0 4.6 5.9 4.3 17.2 19.8 20.7 18.5

1C Stoch. Min. makespan 98.4 83.7 98.0 1.4 4.1 6.1 3.1 17.2 17.2 17.3 17.2
Min. extra-hours 99.9 99.6 100.0 1.0 1.9 2.7 1.0 26.9 27.1 27.4 27.0

3C Det. Min. makespan 0.5 0.0 2.5 16.6 29.1 34.6 26.7 38.1 41.9 42.5 40.1
Min. extra-hours 14.2 2.2 12.5 1.0 15.7 23.6 11.3 45.5 46.4 46.8 45.9

3C Stoch. Min. makespan 96.2 61.1 96.0 6.2 13.0 20.0 10.3 43.2 43.2 43.3 43.2
Min. extra-hours 99.4 97.7 98.7 3.0 6.4 9.9 3.8 58.9 58.9 58.9 58.9

Table 1: Biotech manufacturing case study, involving one (1C) and three (3C) production campaigns, optimizing under either
deterministic (Det.) or stochastic model (Stoch.). We consider 3 different assumptions about the stochastic knowledge: exact
mean, 10% under-estimations and 10% over-estimations, as described in Section 1: first, fourth and fifth in Fig. 4, this time with
E[Xj ] ∼ U(µj − 3%, µj + 10%) and E[Xj ] ∼ U(µj − 10%, µj + 3%). Statistics include the percentages of simulations in
which the optimized schedules (% Success) are found to respect all the problem constraints when executed under the “hidden”
uncertainty (red in Fig. 4). The Plan columns indicate the KPI values as predicted by the a priori schedule, as opposed with the
average KPI values observed during simulations (other columns). Minimize makespan: optimization done while minimizing the
makespan first, extra-hours second. Minimize extra-hours: extra-hours first, makespan second.

to rapidly map, navigate, and search underground environ-
ments including natural cave networks, tunnel systems, and
urban underground infrastructure for particular objects of
interest (e.g. mannequin survivors, backpacks, cell phones,
helmets, etc.), called artifacts. Subterranean environments
pose significant challenges for manned and unmanned oper-
ations due to limited communication and situational aware-
ness. In the SubT competition in particular, only a single
human operator is allowed to interact with the robotic team.
CoSTAR’s robotic team consists of more than four robots
with wheeled, legged, and flying mobility.

Operating multiple robots with different capabilities in
kilometer-long underground environments can go beyond
the cognitive capacity of a single human supervisor – even
with advanced autonomy in place. SubT operations may in-
volve cognitively demanding tasks such as monitoring 3D
mapping of the environment and localization accuracy, es-
tablishing communication links between robots, assessing
location and health of all robots, and submitting detected ar-
tifacts within the allotted competition time. In order to facili-
tate operations during the SubT competition, CoSTAR team
has developed the Copilot MIKE (Kaufmann et al. 2021),
an autonomous assistant for human-in-the-loop multi-robot
operations. During complex and potentially stressful explo-
ration missions, MIKE helps by planning operation tasks re-
lated to setting up and commanding the robots, while main-
taining a bearable workload and high situational awareness.

In this experiment we study the use of Romie to i) model
the tasks and constraints that are required during setup time
and during competition, and to ii) support the operator by
scheduling the tasks in a way that maximizes the robustness.
This case study has principally differs from the two previous
ones by the scale of its time horizon to manage. Whereas the
schedules at MDRS, as well as in the context of biotech pro-
duction, typically involve several weeks, the DARPA SubT
lasts only one hour. In particular, the problem at stake con-
sists here at both 1) setting and getting all the exploration

robots for starting the mission (setup time) and 2) deploying
the team of robots to explore the target underground environ-
ment. The scheduling problem involves setup tasks having
nominal durations ranging between 10 and 120 seconds.

Problem Modelling. Figure 7 shows a graphical drawing
of the problem structure. This diagram, as well as those
shown in Figures 3 and 5, have been drawn using Google-
Docs Drawings. The model involves two principal groups of
activities: the Base group (in blue) and the Robot group (in
yellow). The Base group includes unique activities that are
common to all robots. The Robot group represents all the ac-
tivities specific to one robot. If we have 7 robots, there are 7
duplicates of each activity from the Robot group. The main
challenge results in the fact that everything must be sched-
uled in order to fulfill the time constraints, depicted in red.
For instance, the Start Robot Logging activity must append
between 9:28am and 9:30am, for every robot. Finally, the
human operator is assumed to be able to carry on up to 4
activities at the same time, whereas some activities (denoted
by * in Fig. 7) can be entrusted to MIKE, which could follow
up to 5 activities in parallel. It is important to note that the
only key performance index (KPI) here is the probability of
success, that is, the probability that the schedule actually re-
spects all the temporal constraints shown in red in Fig. 7. In
fact, contrary to previous case studies, the problem at stake
here is no longer an optimization problem but a constraint
satisfaction problem, in the sense that there is no other goal
to be pursued than satisfying these constraints.

The Modelling User Interface. Our tool now integrates
a visual modelling user interface, depicted in Figure 8. The
UI allows to describe the scheduling problem structure, in
terms of temporal and operational constraints. It also al-
lows to input constraints and activity properties, which were
not present in the hand-drawn diagram of Fig. 7. In partic-
ular, the model allows for modified-PERT distributions, a



Figure 7: The DARPA SubT problem structure, as designed by hand using a classical diagram editor.

probability distribution widely used in risk analysis (Kam-
burowski 1997), which has the advantage of enabling asym-
metric bounded probability distributions.

Computing Robust Schedules. Our scheduling engine
exploits parallelization paradigm to achieve reasonable com-
putation times Romie is capable of exploiting parallel com-
puting. On a 60 cores cluster, finding feasible solutions (i.e.
schedules that fulfil the temporal constraints listed in Fig. 7)
takes less than 15 seconds only for problems with up to 15
robots. Up to 18 robots, it takes less than a minute to find
its first feasible solution. Once an initial solution has been
found to be deterministic feasible, meaning that it is feasi-
ble when considering all its durations as deterministic, the
engines switch on the probabilistic optimization mode and
pursue its duty while optimizing with respect to the expected
KPIs: here the probability of success only. No deterministic
feasible solution was found for 19 robots or more (in less
than five minutes). An optimized schedule is depicted in Fig.
9, using the tool’s integrated visualization interface.

Still exploiting 60 cores, for problems involving up to 12
robots Romie finds optimal solutions in less than 5 seconds.
Of course, the nature of the scheduling engine embedded in
Romie, a local search based solution framework, naturally
prevents from providing any optimality proof in general. For
the DARPA SubT challenge however, the only optimized
KPI being the success probability, solutions with 1.0 suc-
cess probability are necessarily optimal. In our case, Romie
finds such solutions for instances involving up to 15 robots,
in which 20 seconds only are required to find a first deter-
ministic feasible solution, and optimal solutions are found
within approximately 2 minutes.

Average Performances of the Computed Schedules. As
usual, the optimized robust schedules are compared to so-
lutions optimized based on deterministic assumption, there-

Bots 1 4 6 10 15 16 17 18

Exa 91.0 82.8 67.8 31.9 0.1 0.0 0.0 0.0
Und 90.0 80.8 58.5 17.4 0.0 0.0 0.0 0.0
Ovr 93.3 88.1 81.4 52.7 9.6 7.0 4.8 0.2

Exa 100 100 100 100 100 95.6 61.5 0.3
Und 100 100 100 100 93.0 40.7 1.3 0.0
Ovr 100 100 100 100 100 100 97.9 56.4

Table 2: DARPA SubT challenge case study, involving up
to 18 robots. We consider three different assumptions about
the stochastic knowledge: exact mean (Exa), [-3%,+10%]
under-estimations (Und) and [-10%,+3%] over-estimations
(Ovr), as described for Table 2. First raws give the average
percentage success, when schedules are optimized using a
deterministic model. The second set of raws give average
results when Romie uses the stochastic model.

fore measuring the average gain at optimizing based on a
probabilistic model against a classical, deterministic one.
The average results are provided in Table 2. Solutions op-
timized under the stochastic model significantly outperform
that of the deterministic one, in terms of reliability (i.e. ro-
bustness), that is, the average percentage of simulation suc-
cess under the three different assumptions made on the qual-
ity of the stochastic knowledge (i.e. accuracy of the chosen
PERT distribution parameters for each activity duration).

4 Conclusions and Future work
In this paper we presented Romie, a state-of-the-art robust
scheduling tool, based on the principle of optimizing under
time uncertainty. We described three very different appli-
cation cases that were handled with our tool, showing the
versatile aspect of Romie, which allows to model and solve
scheduling problem despite the different operational con-
texts. The more recent case study shows that end users are



Figure 8: Modelling using the Romie tool’s user interface. Amongst the different parameters that define an activity: allowed
operators, used resources, execution time windows, parameters defining the duration’s probability distribution (PERT).

Figure 9: An example schedule solving the DARPA Subterranean robot problem, showed in the Romie tool’s schedule visual-
ization interface. Top: 1 robot problem. Middle: 10 robots problem. Each line corresponds to an operator timeline (4 humans, 5
copilots). The interface allows the user to zoom at will, has showed in the bottom of the figure.

actually able to visually describe the scheduling problem at
stake, and further visualize optimized solutions. Once again,
the benefits of using a probabilistic modelling approach, tak-
ing the time uncertainty of activities durations into account
at optimization stage, are clearly confirmed by the empiri-
cal average gains compared to a classical deterministic ap-
proach. Our approach also allows to significantly decrease
extra hours and deviations from a priori decisions, hence re-
ducing the operators’ stress load in manufacturing context.

Future development directions. Our tool currently inte-
grates the key functionalities for a priori robust scheduling
under uncertainty. The next logical step will naturally be to
integrate online management functionalities, namely moni-
toring and reoptimization. Online monitoring of the opera-
tions aims at updating the schedule, as well as the underly-
ing model, in order to keep them consistent with the current
state of the operations. It eventually allows the possibility for

adapting and reoptimizing future decisions, in light of past
decisions and outcomes. These additional features will be
useful for the scheduling of future research and operational
projects. Applications to biotech online manufacturing prob-
lems are planned in the near future, as well as the next circuit
of the DARPA Subterranean Challenge (September 2021).
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